These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 26245321)

  • 21. Tendon length and joint flexibility are related to running economy.
    Hunter GR; Katsoulis K; McCarthy JP; Ogard WK; Bamman MM; Wood DS; Den Hollander JA; Blaudeau TE; Newcomer BR
    Med Sci Sports Exerc; 2011 Aug; 43(8):1492-9. PubMed ID: 21266930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.
    Wang R; Gutierrez-Farewik EM
    Gait Posture; 2014 Mar; 39(3):926-32. PubMed ID: 24374063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle.
    Hoy MG; Zajac FE; Gordon ME
    J Biomech; 1990; 23(2):157-69. PubMed ID: 2312520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial gastrocnemius muscle behavior during human running and walking.
    Ishikawa M; Pakaslahti J; Komi PV
    Gait Posture; 2007 Mar; 25(3):380-4. PubMed ID: 16784858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive dynamics change leg mechanics for an unexpected surface during human hopping.
    Moritz CT; Farley CT
    J Appl Physiol (1985); 2004 Oct; 97(4):1313-22. PubMed ID: 15169748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of speed on leg stiffness and joint kinetics in human running.
    Arampatzis A; Brüggemann GP; Metzler V
    J Biomech; 1999 Dec; 32(12):1349-53. PubMed ID: 10569714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Musculotendon translational stiffness and muscle activity are modified by shear forces.
    Cashaback JG; Fewster K; Potvin JR; Pierrynowski M
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):494-9. PubMed ID: 24802050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle Activation and Estimated Relative Joint Force During Running with Weight Support on a Lower-Body Positive-Pressure Treadmill.
    Jensen BR; Hovgaard-Hansen L; Cappelen KL
    J Appl Biomech; 2016 Aug; 32(4):335-41. PubMed ID: 26957520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of methodologies to assess muscle co-contraction during gait.
    Souissi H; Zory R; Bredin J; Gerus P
    J Biomech; 2017 May; 57():141-145. PubMed ID: 28433389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.
    Meyer AJ; Patten C; Fregly BJ
    PLoS One; 2017; 12(7):e0179698. PubMed ID: 28700708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of muscle forces and joint moments using a forward-inverse dynamics model.
    Buchanan TS; Lloyd DG; Manal K; Besier TF
    Med Sci Sports Exerc; 2005 Nov; 37(11):1911-6. PubMed ID: 16286861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 May; 45(8):1406-13. PubMed ID: 22405495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanics of slow running and walking with a rocker shoe.
    Sobhani S; Hijmans J; van den Heuvel E; Zwerver J; Dekker R; Postema K
    Gait Posture; 2013 Sep; 38(4):998-1004. PubMed ID: 23770233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human leg model predicts ankle muscle-tendon morphology, state, roles and energetics in walking.
    Krishnaswamy P; Brown EN; Herr HM
    PLoS Comput Biol; 2011 Mar; 7(3):e1001107. PubMed ID: 21445231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibre operating lengths of human lower limb muscles during walking.
    Arnold EM; Delp SL
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1530-9. PubMed ID: 21502124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.