These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26245487)

  • 1. Control of layer stacking in CVD graphene under quasi-static condition.
    Subhedar KM; Sharma I; Dhakate SR
    Phys Chem Chem Phys; 2015 Sep; 17(34):22304-10. PubMed ID: 26245487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study.
    Ek-Weis J; Costa S; Frank O; Kalbac M
    J Phys Chem Lett; 2014 Feb; 5(3):549-54. PubMed ID: 26276607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
    Zhao P; Kim S; Chen X; Einarsson E; Wang M; Song Y; Wang H; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2014 Nov; 8(11):11631-8. PubMed ID: 25363605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene.
    Solís-Fernández P; Terao Y; Kawahara K; Nishiyama W; Uwanno T; Lin YC; Yamamoto K; Nakashima H; Nagashio K; Hibino H; Suenaga K; Ago H
    ACS Nano; 2020 Jun; 14(6):6834-6844. PubMed ID: 32407070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twisting bilayer graphene superlattices.
    Lu CC; Lin YC; Liu Z; Yeh CH; Suenaga K; Chiu PW
    ACS Nano; 2013 Mar; 7(3):2587-94. PubMed ID: 23448165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene.
    Liu L; Zhou H; Cheng R; Yu WJ; Liu Y; Chen Y; Shaw J; Zhong X; Huang Y; Duan X
    ACS Nano; 2012 Sep; 6(9):8241-9. PubMed ID: 22906199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy.
    Fang W; Hsu AL; Caudillo R; Song Y; Birdwell AG; Zakar E; Kalbac M; Dubey M; Palacios T; Dresselhaus MS; Araujo PT; Kong J
    Nano Lett; 2013 Apr; 13(4):1541-8. PubMed ID: 23470052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations.
    Zhao H; Lin YC; Yeh CH; Tian H; Chen YC; Xie D; Yang Y; Suenaga K; Ren TL; Chiu PW
    ACS Nano; 2014 Oct; 8(10):10766-73. PubMed ID: 25295851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene.
    Hao Y; Wang L; Liu Y; Chen H; Wang X; Tan C; Nie S; Suk JW; Jiang T; Liang T; Xiao J; Ye W; Dean CR; Yakobson BI; McCarty KF; Kim P; Hone J; Colombo L; Ruoff RS
    Nat Nanotechnol; 2016 May; 11(5):426-31. PubMed ID: 26828845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential growth and twisted stacking of chemical-vapor-deposited graphene.
    Liu J; Zhang X; Zhang S; Zou Z; Zhang Z; Wu Z; Xia Y; Li Q; Zhao P; Wang H
    Nanoscale Adv; 2021 Feb; 3(4):983-990. PubMed ID: 36133285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils.
    Wu Y; Chou H; Ji H; Wu Q; Chen S; Jiang W; Hao Y; Kang J; Ren Y; Piner RD; Ruoff RS
    ACS Nano; 2012 Sep; 6(9):7731-8. PubMed ID: 22946844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging layer number and stacking order through formulating Raman fingerprints obtained from hexagonal single crystals of few layer graphene.
    Hwang JS; Lin YH; Hwang JY; Chang R; Chattopadhyay S; Chen CJ; Chen P; Chiang HP; Tsai TR; Chen LC; Chen KH
    Nanotechnology; 2013 Jan; 24(1):015702. PubMed ID: 23221149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stranski-Krastanov and Volmer-Weber CVD Growth Regimes To Control the Stacking Order in Bilayer Graphene.
    Ta HQ; Perello DJ; Duong DL; Han GH; Gorantla S; Nguyen VL; Bachmatiuk A; Rotkin SV; Lee YH; Rümmeli MH
    Nano Lett; 2016 Oct; 16(10):6403-6410. PubMed ID: 27683947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-photoluminescence of Carbon Dots Deposited on Twisted Double-Layer Graphene Grown by Chemical Vapor Deposition.
    Faggio G; Grillo R; Foti A; Agnello S; Messina F; Messina G
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7324-7333. PubMed ID: 33529012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Vapor Deposition of Bernal-Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils.
    Yoo MS; Lee HC; Lee S; Lee SB; Lee NS; Cho K
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition.
    Yan K; Peng H; Zhou Y; Li H; Liu Z
    Nano Lett; 2011 Mar; 11(3):1106-10. PubMed ID: 21322597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial nucleation of CVD bilayer graphene on copper.
    Song Y; Zhuang J; Song M; Yin S; Cheng Y; Zhang X; Wang M; Xiang R; Xia Y; Maruyama S; Zhao P; Ding F; Wang H
    Nanoscale; 2016 Dec; 8(48):20001-20007. PubMed ID: 27858033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.