BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 26245964)

  • 21. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity.
    Jorquera RA; Huntwork-Rodriguez S; Akbergenova Y; Cho RW; Littleton JT
    J Neurosci; 2012 Dec; 32(50):18234-45. PubMed ID: 23238737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release.
    Yao J; Gaffaney JD; Kwon SE; Chapman ER
    Cell; 2011 Oct; 147(3):666-77. PubMed ID: 22036572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons.
    Xu J; Mashimo T; Südhof TC
    Neuron; 2007 May; 54(4):567-81. PubMed ID: 17521570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptotagmin 1 directs repetitive release by coupling vesicle exocytosis to the Rab3 cycle.
    Cheng Y; Wang J; Wang Y; Ding M
    Elife; 2015 Feb; 4():. PubMed ID: 25710274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo.
    Paddock BE; Wang Z; Biela LM; Chen K; Getzy MD; Striegel A; Richmond JE; Chapman ER; Featherstone DE; Reist NE
    J Neurosci; 2011 Feb; 31(6):2248-57. PubMed ID: 21307261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse.
    Geppert M; Goda Y; Hammer RE; Li C; Rosahl TW; Stevens CF; Südhof TC
    Cell; 1994 Nov; 79(4):717-27. PubMed ID: 7954835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1.
    Yoshihara M; Guan Z; Littleton JT
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14869-74. PubMed ID: 20679236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global Ca2+ signaling drives ribbon-independent synaptic transmission at rod bipolar cell synapses.
    Mehta B; Ke JB; Zhang L; Baden AD; Markowitz AL; Nayak S; Briggman KL; Zenisek D; Singer JH
    J Neurosci; 2014 Apr; 34(18):6233-44. PubMed ID: 24790194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression and distribution of synaptotagmin family members in the zebrafish retina.
    Henry D; Joselevitch C; Matthews GG; Wollmuth LP
    J Comp Neurol; 2022 Mar; 530(4):705-728. PubMed ID: 34468021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release.
    Maximov A; Südhof TC
    Neuron; 2005 Nov; 48(4):547-54. PubMed ID: 16301172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sr
    Zhang S; Wang X; Wang X; Shen X; Sun J; Hu X; Chen P
    Synapse; 2017 Nov; 71(11):. PubMed ID: 28857293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal Regulation of Fast Synaptotagmin Isoforms Controls the Relative Contributions of Synchronous and Asynchronous Release.
    Turecek J; Regehr WG
    Neuron; 2019 Mar; 101(5):938-949.e4. PubMed ID: 30733150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptotagmins: Beyond Presynaptic Neurotransmitter Release.
    Wu X; Hu S; Kang X; Wang C
    Neuroscientist; 2020 Feb; 26(1):9-15. PubMed ID: 31046622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release.
    Nishiki T; Augustine GJ
    J Neurosci; 2004 Sep; 24(39):8542-50. PubMed ID: 15456828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphatidylinositol 4,5-bisphosphate drives Ca
    Bradberry MM; Bao H; Lou X; Chapman ER
    J Biol Chem; 2019 Jul; 294(28):10942-10953. PubMed ID: 31147445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses.
    Chen C; Satterfield R; Young SM; Jonas P
    Cell Rep; 2017 Nov; 21(8):2082-2089. PubMed ID: 29166601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission.
    Chung C; Raingo J
    J Neurochem; 2013 Jul; 126(2):146-54. PubMed ID: 23517499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion.
    Seibert MJ; Evans CS; Stanley KS; Wu Z; Chapman ER
    J Neurosci; 2023 Mar; 43(9):1475-1491. PubMed ID: 36732068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous Vesicle Release Is Not Tightly Coupled to Voltage-Gated Calcium Channel-Mediated Ca2+ Influx and Is Triggered by a Ca2+ Sensor Other Than Synaptotagmin-2 at the Juvenile Mice Calyx of Held Synapses.
    Dai J; Chen P; Tian H; Sun J
    J Neurosci; 2015 Jul; 35(26):9632-7. PubMed ID: 26134646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles.
    Butz S; Fernandez-Chacon R; Schmitz F; Jahn R; Südhof TC
    J Biol Chem; 1999 Jun; 274(26):18290-6. PubMed ID: 10373432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.