These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26246034)

  • 1. Morphology-dependent low macroscopic field emission properties of titania/titanate nanorods synthesized by alkali-controlled hydrothermal treatment of a metallic Ti surface.
    Anitha VC; Banerjee AN; Joo SW; Min BK
    Nanotechnology; 2015 Sep; 26(35):355705. PubMed ID: 26246034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors.
    Banerjee AN; Anitha VC; Joo SW
    Sci Rep; 2017 Oct; 7(1):13227. PubMed ID: 29038427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large field enhancement at electrochemically grown quasi-1D Ni nanostructures with low-threshold cold-field electron emission.
    Banerjee AN; Qian S; Joo SW
    Nanotechnology; 2011 Jan; 22(3):035702. PubMed ID: 21149965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical titania nanotubes with self-branched crystalline nanorods.
    Bae C; Yoon Y; Yoon WS; Moon J; Kim J; Shin H
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1581-7. PubMed ID: 20527769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology, crystal structure and adsorption performance of hydrothermally synthesized titania and titanate nanostructures.
    Lim YW; Tang Y; Cheng YH; Chen Z
    Nanoscale; 2010 Dec; 2(12):2751-7. PubMed ID: 20938546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates.
    Mao Y; Kanungo M; Hemraj-Benny T; Wong SS
    J Phys Chem B; 2006 Jan; 110(2):702-10. PubMed ID: 16471591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide.
    Kolen'ko YV; Kovnir KA; Gavrilov AI; Garshev AV; Frantti J; Lebedev OI; Churagulov BR; Van Tendeloo G; Yoshimura M
    J Phys Chem B; 2006 Mar; 110(9):4030-8. PubMed ID: 16509693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticles on titanate nanobelts via the self-assembly of weak polyelectrolytes: synthesis and photocatalytic properties.
    Bracko I; Jancar B; Logar M; Caglic D; Suvorov D
    Nanotechnology; 2011 Feb; 22(8):085705. PubMed ID: 21242620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications.
    Banerjee AN; Joo SW
    Nanotechnology; 2011 Sep; 22(36):365705. PubMed ID: 21841217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.
    Xu J; Wang Q; Tao Z; Qi Z; Zhai Y; Wu S; Zhang X; Lei W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3295-300. PubMed ID: 26795930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical nanostructured ZnO with nanorods engendered to nanopencils and pin-cushion cactus with its field emission study.
    Warule SS; Chaudhari NS; Ambekar JD; Kale BB; More MA
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3454-62. PubMed ID: 21815672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of field electron emission in topological insulator Bi
    Mazumder K; Sharma A; Kumar Y; Bankar P; More MA; Devan R; Shirage PM
    Phys Chem Chem Phys; 2018 Jul; 20(27):18429-18435. PubMed ID: 29947380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications.
    Mohan CC; Chennazhi KP; Menon D
    Acta Biomater; 2013 Dec; 9(12):9568-77. PubMed ID: 23973390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate.
    Wang X; Li Y; Lin J; Hodgson PD; Wen C
    Dent Mater; 2008 Nov; 24(11):1549-55. PubMed ID: 18455227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure.
    Zhang J; Xiao X; Nan J
    J Hazard Mater; 2010 Apr; 176(1-3):617-22. PubMed ID: 20004517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable field emission performance from urchin-like ZnO nanostructures.
    Jiang H; Hu J; Gu F; Li C
    Nanotechnology; 2009 Feb; 20(5):055706. PubMed ID: 19417365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
    Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK
    ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells.
    Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL
    Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiky mesoporous anatase titania beads: a metastable ammonium titanate-mediated synthesis.
    Chen D; Huang F; Cao L; Cheng YB; Caruso RA
    Chemistry; 2012 Oct; 18(43):13762-9. PubMed ID: 23019011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Titanium Surface Engineering via Low-Temperature Hydrothermal Etching for Enhanced Antimicrobial Properties.
    Morel J; McNeilly O; Grundy S; Brown T; Gunawan C; Amal R; Scott JA
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46247-46260. PubMed ID: 37738302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.