These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1043 related articles for article (PubMed ID: 26246229)

  • 1. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach.
    Pan J; Li Y; Zhang R; Gu Z; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer.
    Yang C; Han X; Wang Y; Saab R; Gao S; Gao X
    Int J Neural Syst; 2018 Dec; 28(10):1850028. PubMed ID: 30105920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.
    Morikawa N; Tanaka T; Islam MR
    J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    Int J Neural Syst; 2014 Jun; 24(4):1450013. PubMed ID: 24694168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neurosci Methods; 2018 Sep; 307():164-174. PubMed ID: 29890196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-step idle-state detection method for SSVEP BCI.
    Du J; Ke Y; Liu P; Liu W; Kong L; Wang N; Xu M; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3095-3098. PubMed ID: 31946542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 12. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MUSIC-based method for SSVEP signal processing.
    Chen K; Liu Q; Ai Q; Zhou Z; Xie SQ; Meng W
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):71-84. PubMed ID: 26831487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.