These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26246488)

  • 41. Topographic mapping of EEG spectral power and coherence in delta activity during the transition from wakefulness to sleep.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):155-7. PubMed ID: 10459676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of resting and active state EEG features of Alzheimer's disease using discrete wavelet transform.
    Ghorbanian P; Devilbiss DM; Verma A; Bernstein A; Hess T; Simon AJ; Ashrafiuon H
    Ann Biomed Eng; 2013 Jun; 41(6):1243-57. PubMed ID: 23536113
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.
    Marzano C; Ferrara M; Curcio G; De Gennaro L
    J Sleep Res; 2010 Jun; 19(2):260-8. PubMed ID: 19845849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification.
    LeVan P; Urrestarazu E; Gotman J
    Clin Neurophysiol; 2006 Apr; 117(4):912-27. PubMed ID: 16458594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals.
    Shahidi Zandi A; Tafreshi R; Javidan M; Dumont GA
    IEEE Trans Biomed Eng; 2013 May; 60(5):1401-13. PubMed ID: 23292785
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatio-temporal EEG power spectral patterns during a short daytime nap.
    Luo Z; Honda K; Inoué S
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):193-5. PubMed ID: 11422838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Principal components of electroencephalographic spectrum as markers of opponent processes underlying ultradian sleep cycles.
    Putilov AA
    Chronobiol Int; 2011 May; 28(4):287-99. PubMed ID: 21539420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inter-hemispheric asynchrony of the brain during events of apnoea and EEG arousals.
    Swarnkar V; Abeyratne UR; Hukins C
    Physiol Meas; 2007 Aug; 28(8):869-80. PubMed ID: 17664679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Computer-assisted analysis of the electroencephalogram with a theta ground rhythm variant].
    Wendland KL; Kammel N; Gundel A
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1992 Dec; 23(4):221-6. PubMed ID: 1486828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral power time-courses of human sleep EEG reveal a striking discontinuity at approximately 18 Hz marking the division between NREM-specific and wake/REM-specific fast frequency activity.
    Merica H; Fortune RD
    Cereb Cortex; 2005 Jul; 15(7):877-84. PubMed ID: 15459085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of coherence between blood flow and spontaneous EEG activity in neonates.
    Simpson DM; BoteroRosas DA; Infantosi AF
    IEEE Trans Biomed Eng; 2005 May; 52(5):852-8. PubMed ID: 15887534
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessing EEG sleep spindle propagation. Part 1: theory and proposed methodology.
    O'Reilly C; Nielsen T
    J Neurosci Methods; 2014 Jan; 221():202-14. PubMed ID: 23999176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary.
    Picot A; Whitmore H; Chapotot F
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2808-17. PubMed ID: 22868527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of epileptic seizures in scalp electroencephalogram: an automated real-time wavelet-based approach.
    Zandi AS; Dumont GA; Javidan M; Tafreshi R
    J Clin Neurophysiol; 2012 Feb; 29(1):1-16. PubMed ID: 22353980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EEG biometric identification: a thorough exploration of the time-frequency domain.
    DelPozo-Banos M; Travieso CM; Weidemann CT; Alonso JB
    J Neural Eng; 2015 Oct; 12(5):056019. PubMed ID: 26394698
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wearable In-Ear Encephalography Sensor for Monitoring Sleep. Preliminary Observations from Nap Studies.
    Looney D; Goverdovsky V; Rosenzweig I; Morrell MJ; Mandic DP
    Ann Am Thorac Soc; 2016 Dec; 13(12):2229-2233. PubMed ID: 27684316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drowsiness Detection by Bayesian-Copula Discriminant Classifier Based on EEG Signals During Daytime Short Nap.
    Qian D; Wang B; Qing X; Zhang T; Zhang Y; Wang X; Nakamura M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):743-754. PubMed ID: 27254855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A unique pattern of sleep structure is found to be identical at all cortical sites: a neurobiological interpretation.
    Merica H; Fortune RD
    Cereb Cortex; 2003 Oct; 13(10):1044-50. PubMed ID: 12967921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.