These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26246641)

  • 41. A wireless ECG acquisition and classification system for body sensor networks.
    Hong JH; Lee SY; Liang MC; Hsieh CH; Chang Chien SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5183-6. PubMed ID: 24110903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces.
    Song M; Huang Y; Visser HJ; Romme J; Liu YH
    IEEE J Solid-State Circuits; 2022 Dec; 57(12):3656-3668. PubMed ID: 36743394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Low-Power 12-Bit 20 MS/s Asynchronously Controlled SAR ADC for WAVE ITS Sensor Based Applications.
    Shehzad K; Verma D; Khan D; Ain QU; Basim M; Kim SJ; Rikan BS; Pu YG; Hwang KC; Yang Y; Lee KY
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33804902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications.
    Lee W; Choi SI; Kim HI; Hwang S; Jeon S; Yoon YK
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640900
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Subcubic Millimeter Wireless Implantable Intraocular Pressure Monitor Microsystem.
    Bhamra H; Tsai JW; Huang YW; Yuan Q; Shah JV; Irazoqui P
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1204-1215. PubMed ID: 29293418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RF Energy Harvesting System Based on an Archimedean Spiral Antenna for Low-Power Sensor Applications.
    Alex-Amor A; Palomares-Caballero Á; Fernández-González JM; Padilla P; Marcos D; Sierra-Castañer M; Esteban J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A 1.02 μW Battery-Less, Continuous Sensing and Post-Processing SiP for Wearable Applications.
    Lukas CJ; Yahya FB; Breiholz J; Roy A; Chen X; Patel HN; Liu N; Kosari A; Li S; Akella Kamakshi D; Ayorinde O; Wentzloff DD; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):271-281. PubMed ID: 30676976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A High-Voltage Energy-Harvesting Interface for Irregular Kinetic Energy Harvesting in IoT Systems with 1365% Improvement Using All-NMOS Power Switches and Ultra-low Quiescent Current Controller.
    Saif H; Khan MB; Lee J; Lee K; Lee Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of a Humidity Sensor Tag for Passive Wireless Applications.
    Wu X; Deng F; Hao Y; Fu Z; Zhang L
    Sensors (Basel); 2015 Oct; 15(10):25564-76. PubMed ID: 26457707
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The design and performance of a 2.5-GHz telecommand link for wireless biomedical monitoring.
    Crumley GC; Evans NE; Scanlon WG; Burns JB; Trouton TG
    IEEE Trans Inf Technol Biomed; 2000 Dec; 4(4):285-91. PubMed ID: 11206813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A multi-channel low-power system-on-chip for single-unit recording and narrowband wireless transmission of neural signal.
    Bonfanti A; Ceravolo M; Zambra G; Gusmeroli R; Spinelli AS; Lacaita AL; Angotzi GN; Baranauskas G; Fadiga L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1555-60. PubMed ID: 21096380
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.
    Mouapi A; Hakem N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A 200-Mb/s Energy Efficient Transcranial Transmitter Using Inductive Coupling.
    Li W; Duan Y; Rabaey J
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):435-443. PubMed ID: 30596584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications.
    Wang Y; Zhou R; Liu Z; Yan B
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-Power RFED Wake-Up Receiver Design for Low-Cost Wireless Sensor Network Applications.
    Galante-Sempere D; Ramos-Valido D; Lalchand Khemchandani S; Del Pino J
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.
    Wang LH; Chen TY; Lin KH; Fang Q; Lee SY
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):247-55. PubMed ID: 25561447
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
    Majerus SJ; Garverick SL; Suster MA; Fletter PC; Damaser MS
    ACM J Emerg Technol Comput Syst; 2012 Jun; 8(2):. PubMed ID: 26778926
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis, Characterization and Development of Energy Harvesting Techniques Incorporated with Antennas: A Review Study.
    Ibrahim HH; Singh MSJ; Al-Bawri SS; Islam MT
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32414069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A MedRadio-band low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices.
    Chou CW; Liu LC; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5171-4. PubMed ID: 24110900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.