These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 26246970)
1. Mechanistic pathways of mercury removal from the organomercurial lyase active site. Silva PJ; Rodrigues V PeerJ; 2015; 3():e1127. PubMed ID: 26246970 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173 [TBL] [Abstract][Full Text] [Related]
3. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA). Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation. Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822 [TBL] [Abstract][Full Text] [Related]
5. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione . Hong B; Nauss R; Harwood IM; Miller SM Biochemistry; 2010 Sep; 49(37):8187-96. PubMed ID: 20722420 [TBL] [Abstract][Full Text] [Related]
6. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA. Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746 [TBL] [Abstract][Full Text] [Related]
7. Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon-Metal Bond Cleavage. Wahba HM; Stevenson MJ; Mansour A; Sygusch J; Wilcox DE; Omichinski JG J Am Chem Soc; 2017 Jan; 139(2):910-921. PubMed ID: 27989130 [TBL] [Abstract][Full Text] [Related]
8. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485 [TBL] [Abstract][Full Text] [Related]
9. The roles of thiols in the bacterial organomercurial lyase (MerB). Pitts KE; Summers AO Biochemistry; 2002 Aug; 41(32):10287-96. PubMed ID: 12162744 [TBL] [Abstract][Full Text] [Related]
10. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system. Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745 [TBL] [Abstract][Full Text] [Related]
11. Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Bizily SP; Kim T; Kandasamy MK; Meagher RB Plant Physiol; 2003 Feb; 131(2):463-71. PubMed ID: 12586871 [TBL] [Abstract][Full Text] [Related]
12. Expanded Diversity and Phylogeny of Christakis CA; Barkay T; Boyd ES Front Microbiol; 2021; 12():682605. PubMed ID: 34248899 [TBL] [Abstract][Full Text] [Related]
13. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB. Karri R; Das R; Rai RK; Gopalakrishnan A; Roy G Chem Commun (Camb); 2020 Aug; 56(65):9280-9283. PubMed ID: 32558833 [TBL] [Abstract][Full Text] [Related]
14. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187 [TBL] [Abstract][Full Text] [Related]
15. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta. Bojin MD; Schlick T J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165 [TBL] [Abstract][Full Text] [Related]
16. DFT studies of the degradation mechanism of methyl mercury activated by a sulfur-rich ligand. Li X; Liao RZ; Zhou W; Chen G Phys Chem Chem Phys; 2010 Apr; 12(16):3961-71. PubMed ID: 20379488 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Walsh CT; Distefano MD; Moore MJ; Shewchuk LM; Verdine GL FASEB J; 1988 Feb; 2(2):124-30. PubMed ID: 3277886 [TBL] [Abstract][Full Text] [Related]
20. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]