BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26247207)

  • 1. A Pan-GTPase Inhibitor as a Molecular Probe.
    Hong L; Guo Y; BasuRay S; Agola JO; Romero E; Simpson DS; Schroeder CE; Simons P; Waller A; Garcia M; Carter M; Ursu O; Gouveia K; Golden JE; Aubé J; Wandinger-Ness A; Sklar LA
    PLoS One; 2015; 10(8):e0134317. PubMed ID: 26247207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition.
    Agola JO; Hong L; Surviladze Z; Ursu O; Waller A; Strouse JJ; Simpson DS; Schroeder CE; Oprea TI; Golden JE; Aubé J; Buranda T; Sklar LA; Wandinger-Ness A
    ACS Chem Biol; 2012 Jun; 7(6):1095-108. PubMed ID: 22486388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway.
    Deroanne CF; Hamelryckx D; Ho TT; Lambert CA; Catroux P; Lapière CM; Nusgens BV
    J Cell Sci; 2005 Mar; 118(Pt 6):1173-83. PubMed ID: 15728253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridial toxins: molecular probes of Rho-dependent signaling and apoptosis.
    Bobak DA
    Mol Cell Biochem; 1999 Mar; 193(1-2):37-42. PubMed ID: 10331636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1.
    Kogut MH; Genovese KJ; He H
    Mol Immunol; 2007 Mar; 44(7):1729-36. PubMed ID: 17045653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small Molecule Inhibition of Rab7 Impairs B Cell Class Switching and Plasma Cell Survival To Dampen the Autoantibody Response in Murine Lupus.
    Lam T; Kulp DV; Wang R; Lou Z; Taylor J; Rivera CE; Yan H; Zhang Q; Wang Z; Zan H; Ivanov DN; Zhong G; Casali P; Xu Z
    J Immunol; 2016 Nov; 197(10):3792-3805. PubMed ID: 27742832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate.
    Jo E; Sanna MG; Gonzalez-Cabrera PJ; Thangada S; Tigyi G; Osborne DA; Hla T; Parrill AL; Rosen H
    Chem Biol; 2005 Jun; 12(6):703-15. PubMed ID: 15975516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and application of in vivo FRET biosensors to identify protein prenylation and nanoclustering inhibitors.
    Köhnke M; Schmitt S; Ariotti N; Piggott AM; Parton RG; Lacey E; Capon RJ; Alexandrov K; Abankwa D
    Chem Biol; 2012 Jul; 19(7):866-74. PubMed ID: 22840774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Rho Family GTPases by Small Molecules.
    Palsuledesai CC; Surviladze Z; Waller A; Miscioscia TF; Guo Y; Wu Y; Strouse J; Romero E; Salas VM; Curpan R; Young S; Carter M; Foutz T; Galochkina Z; Ames H; Haynes MK; Edwards BS; Nicolotti O; Luo L; Ursu O; Bologa CG; Oprea TI; Wandinger-Ness A; Sklar LA
    ACS Chem Biol; 2018 Jun; 13(6):1514-1524. PubMed ID: 29746086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1.
    Olson MF; Paterson HF; Marshall CJ
    Nature; 1998 Jul; 394(6690):295-9. PubMed ID: 9685162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases.
    Ghittoni R; Patrussi L; Pirozzi K; Pellegrini M; Lazzerini PE; Capecchi PL; Pasini FL; Baldari CT
    FASEB J; 2005 Apr; 19(6):605-7. PubMed ID: 15677697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells.
    Roux P; Gauthier-Rouvière C; Doucet-Brutin S; Fort P
    Curr Biol; 1997 Sep; 7(9):629-37. PubMed ID: 9285711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Rab GTPases to distinct membrane compartments.
    Pfeffer S; Aivazian D
    Nat Rev Mol Cell Biol; 2004 Nov; 5(11):886-96. PubMed ID: 15520808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial cytotoxins target Rho GTPases.
    Schmidt G; Aktories K
    Naturwissenschaften; 1998 Jun; 85(6):253-61. PubMed ID: 9686394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Established and emerging fluorescence-based assays for G-protein function: Ras-superfamily GTPases.
    Rojas RJ; Kimple RJ; Rossman KL; Siderovski DP; Sondek J
    Comb Chem High Throughput Screen; 2003 Jun; 6(4):409-18. PubMed ID: 12769685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rab37 is a novel mast cell specific GTPase localized to secretory granules.
    Masuda ES; Luo Y; Young C; Shen M; Rossi AB; Huang BC; Yu S; Bennett MK; Payan DG; Scheller RH
    FEBS Lett; 2000 Mar; 470(1):61-4. PubMed ID: 10722846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of IRF1-dependent anticancer effects by MEK inhibition in human cancer cells.
    AbuSara N; Razavi S; Derwish L; Komatsu Y; Licursi M; Hirasawa K
    Cancer Lett; 2015 Feb; 357(2):575-81. PubMed ID: 25497010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i).
    Mochizuki N; Ohba Y; Kiyokawa E; Kurata T; Murakami T; Ozaki T; Kitabatake A; Nagashima K; Matsuda M
    Nature; 1999 Aug; 400(6747):891-4. PubMed ID: 10476970
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.