BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26247412)

  • 21. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.
    Protano G; Riccobono F
    Environ Pollut; 2002; 117(3):499-514. PubMed ID: 11911532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mine drainage: Remediation technology and resource recovery.
    Viadero RC; Zhang S; Hu X; Wei X
    Water Environ Res; 2020 Oct; 92(10):1533-1540. PubMed ID: 32671879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource.
    Hermassi M; Granados M; Valderrama C; Ayora C; Cortina JL
    Sci Total Environ; 2022 Mar; 810():152258. PubMed ID: 34896513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clipping strategy to assist phytoremediation by hyperaccumulator
    Zhiqiang C; Zhibiao C
    Int J Phytoremediation; 2020; 22(10):1038-1047. PubMed ID: 32062979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of baseline ecotoxicity of sediments from a prospective mining area enriched in light rare earth elements.
    Romero-Freire A; Minguez L; Pelletier M; Cayer A; Caillet C; Devin S; Gross EM; Guérold F; Pain-Devin S; Vignati DAL; Giamberini L
    Sci Total Environ; 2018 Jan; 612():831-839. PubMed ID: 28881306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of middle rare earth element enrichment in acid mine drainage-impacted areas.
    Grawunder A; Merten D; Büchel G
    Environ Sci Pollut Res Int; 2014; 21(11):6812-23. PubMed ID: 24385183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental geochemistry reflected by rare earth elements in Bohai Bay (North China) core sediments.
    Xu YY; Song JM; Duan LQ; Li XG; Zhang Y; Sun PY
    J Environ Monit; 2010 Aug; 12(8):1547-55. PubMed ID: 20582370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Speciation and distribution characters of rare earth elements in the Baotou Section of the Yellow River].
    He J; Mi N; Kuang YC; Fan QY; Wang X; Guan W; Li GH; Li CS; Wang XW
    Huan Jing Ke Xue; 2004 Mar; 25(2):61-6. PubMed ID: 15202236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China.
    Guo MN; Zhong X; Liu WS; Wang GB; Chao YQ; Huot H; Qiu RL; Morel JL; Watteau F; Séré G; Tang YT
    Sci Total Environ; 2022 Jul; 828():154361. PubMed ID: 35288140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologies.
    Lima AT; Ottosen L
    Chemosphere; 2021 Feb; 265():129163. PubMed ID: 33293053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Untangling microbial diversity and assembly patterns in rare earth element mine drainage in South China.
    Chen Z; Fei YH; Liu WS; Ding K; Lu J; Cai X; Cui T; Tang YT; Wang S; Chao Y; Qiu R
    Water Res; 2022 Oct; 225():119172. PubMed ID: 36191530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China.
    Pan Y; Li H
    Environ Manage; 2016 Apr; 57(4):879-93. PubMed ID: 26787014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rare earth elements (REEs): geochemical patterns and contamination aspects in Brazilian benchmark soils.
    Bispo FHA; de Menezes MD; Fontana A; Sarkis JES; Gonçalves CM; de Carvalho TS; Curi N; Guilherme LRG
    Environ Pollut; 2021 Nov; 289():117972. PubMed ID: 34426210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural wetlands are efficient at providing long-term metal remediation of freshwater systems polluted by acid mine drainage.
    Dean AP; Lynch S; Rowland P; Toft BD; Pittman JK; White KN
    Environ Sci Technol; 2013; 47(21):12029-36. PubMed ID: 24088022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution temporal monitoring of rare earth elements in acidic drainages from an abandoned sulphide mine (iberian pyrite belt, Spain).
    Moreno-González R; Cánovas CR; Millán-Becerro R; León R; Olías M
    Chemosphere; 2023 Dec; 344():140297. PubMed ID: 37783356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.
    Rakotonimaro TV; Neculita CM; Bussière B; Benzaazoua M; Zagury GJ
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):73-91. PubMed ID: 27757745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters.
    Ma L; Dang DH; Wang W; Evans RD; Wang WX
    Environ Pollut; 2019 Jan; 244():190-201. PubMed ID: 30340165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application.
    Zhang S; Shan XQ
    Environ Pollut; 2001; 112(3):395-405. PubMed ID: 11291446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences.
    Ayora C; Caraballo MA; Macias F; Rötting TS; Carrera J; Nieto JM
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7837-53. PubMed ID: 23508532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rare earth elements in German soils - A review.
    Mihajlovic J; Rinklebe J
    Chemosphere; 2018 Aug; 205():514-523. PubMed ID: 29705642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.