These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26247428)
1. Electrocatalytic H2 Evolution by Supramolecular Ru(II)-Rh(III)-Ru(II) Complexes: Importance of Ligands as Electron Reservoirs and Speciation upon Reduction. Manbeck GF; Canterbury T; Zhou R; King S; Nam G; Brewer KJ Inorg Chem; 2015 Aug; 54(16):8148-57. PubMed ID: 26247428 [TBL] [Abstract][Full Text] [Related]
2. Nonchromophoric halide ligand variation in polyazine-bridged Ru(II),Rh(III) bimetallic supramolecules offering new insight into photocatalytic hydrogen production from water. Rogers HM; White TA; Stone BN; Arachchige SM; Brewer KJ Inorg Chem; 2015 Apr; 54(7):3545-51. PubMed ID: 25782053 [TBL] [Abstract][Full Text] [Related]
3. New supramolecular structural motif coupling a ruthenium(II) polyazine light absorber to a rhodium(I) center. Zhou R; Sedai B; Manbeck GF; Brewer KJ Inorg Chem; 2013 Dec; 52(23):13314-24. PubMed ID: 24245990 [TBL] [Abstract][Full Text] [Related]
4. Redox, spectroscopic, and photophysical properties of Ru-Pt mixed-metal complexes incorporating 4,7-diphenyl-1,10-phenanthroline as efficient DNA binding and photocleaving agents. Higgins SL; White TA; Winkel BS; Brewer KJ Inorg Chem; 2011 Jan; 50(2):463-70. PubMed ID: 21155537 [TBL] [Abstract][Full Text] [Related]
5. Subunit variation to uncover properties of polyazine-bridged Ru(II), Pt(II) supramolecules with low lying charge separated states providing insight into the functioning as H2O reduction photocatalysts to produce H2. Knoll JD; Higgins SL; White TA; Brewer KJ Inorg Chem; 2013 Sep; 52(17):9749-60. PubMed ID: 23941111 [TBL] [Abstract][Full Text] [Related]
6. Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts. Manbeck GF; Fujita E; Brewer KJ J Am Chem Soc; 2017 Jun; 139(23):7843-7854. PubMed ID: 28570063 [TBL] [Abstract][Full Text] [Related]
7. Tuning the Photophysical Properties of Ru(II) Monometallic and Ru(II),Rh(III) Bimetallic Supramolecular Complexes by Selective Ligand Deuteration. Wagner AT; Zhou R; Quinn KS; White TA; Wang J; Brewer KJ J Phys Chem A; 2015 Jul; 119(26):6781-90. PubMed ID: 26054003 [TBL] [Abstract][Full Text] [Related]
8. Ruthenium(II)-polyazine light absorbers bridged to reactive cis-dichlororhodium(III) centers in a bimetallic molecular architecture. Zigler DF; Wang J; Brewer KJ Inorg Chem; 2008 Dec; 47(23):11342-50. PubMed ID: 18980300 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Solar Fuel Production Schemes by Using a Ru,Rh,Ru Supramolecular Photocatalyst Containing Hydroxide Labile Ligands. Rogers HM; Arachchige SM; Brewer KJ Chemistry; 2015 Nov; 21(47):16948-54. PubMed ID: 26435051 [TBL] [Abstract][Full Text] [Related]
10. A new heptanuclear dendritic ruthenium(II) complex featuring photoinduced energy transfer across high-energy subunits. Puntoriero F; Serroni S; Galletta M; Juris A; Licciardello A; Chiorboli C; Campagna S; Scandola F Chemphyschem; 2005 Jan; 6(1):129-38. PubMed ID: 15688656 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs. Knoll JD; Arachchige SM; Wang G; Rangan K; Miao R; Higgins SL; Okyere B; Zhao M; Croasdale P; Magruder K; Sinclair B; Wall C; Brewer KJ Inorg Chem; 2011 Sep; 50(18):8850-60. PubMed ID: 21861446 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional DNA interactions of Ru-Pt mixed metal supramolecular complexes with substituted terpyridine ligands. Jain A; Wang J; Mashack ER; Winkel BS; Brewer KJ Inorg Chem; 2009 Oct; 48(19):9077-84. PubMed ID: 19739630 [TBL] [Abstract][Full Text] [Related]
14. Variation of DNA photocleavage efficiency for [(TL)2Ru(dpp)]Cl2 complexes where TL=2,2'-bipyridine, 1,10-phenanthroline, or 4,7-diphenyl-1,10-phenanthroline. Mongelli MT; Heinecke J; Mayfield S; Okyere B; Winkel BS; Brewer KJ J Inorg Biochem; 2006 Dec; 100(12):1983-7. PubMed ID: 17095094 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water. Camara F; Gavaggio T; Dautreppe B; Chauvin J; Pécaut J; Aldakov D; Collomb MN; Fortage J Molecules; 2022 Oct; 27(19):. PubMed ID: 36235152 [TBL] [Abstract][Full Text] [Related]
16. Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection. Arachchige SM; Brown JR; Chang E; Jain A; Zigler DF; Rangan K; Brewer KJ Inorg Chem; 2009 Mar; 48(5):1989-2000. PubMed ID: 19235960 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical and electrogenerated chemiluminescent studies of a trinuclear complex, [((phen)2Ru(dpp))2RhCl2]5+, and its interactions with calf thymus DNA. Wang S; Milam J; Ohlin AC; Rambaran VH; Clark E; Ward W; Seymour L; Casey WH; Holder AA; Miao W Anal Chem; 2009 May; 81(10):4068-75. PubMed ID: 19358569 [TBL] [Abstract][Full Text] [Related]
18. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. Hu X; Brunschwig BS; Peters JC J Am Chem Soc; 2007 Jul; 129(29):8988-98. PubMed ID: 17602556 [TBL] [Abstract][Full Text] [Related]
19. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system. Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic and photocatalytic conversion of CO(2) to methanol using ruthenium complexes with internal pyridyl cocatalysts. Boston DJ; Pachón YM; Lezna RO; de Tacconi NR; MacDonnell FM Inorg Chem; 2014 Jul; 53(13):6544-53. PubMed ID: 24909055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]