These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26247663)

  • 21. Crystal structure, diffusion path, and oxygen permeability of a Pr(2)NiO(4)-based mixed conductor (Pr(0.9)La(0.1))(2)(Ni(0.74)Cu(0.21)Ga(0.05))O(4+delta).
    Yashima M; Sirikanda N; Ishihara T
    J Am Chem Soc; 2010 Feb; 132(7):2385-92. PubMed ID: 20121092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Efficient CO
    Ye L; Pan C; Zhang M; Li C; Chen F; Gan L; Xie K
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25350-25357. PubMed ID: 28686008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the CO2 Poisoning Effect on a Highly Active Cathode SrSc(0.175)Nb(0.025)Co(0.8)O(3-δ) in the Oxygen Reduction Reaction.
    Zhang Y; Yang G; Chen G; Ran R; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3003-11. PubMed ID: 26760218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perovskite Sr₁-xCexCoO₃-δ (0.05 ≤ x ≤ 0.15) as superior cathodes for intermediate temperature solid oxide fuel cells.
    Yang W; Hong T; Li S; Ma Z; Sun C; Xia C; Chen L
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1143-8. PubMed ID: 23336216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.
    Sengodan S; Choi S; Jun A; Shin TH; Ju YW; Jeong HY; Shin J; Irvine JT; Kim G
    Nat Mater; 2015 Feb; 14(2):205-9. PubMed ID: 25532072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen vacancy formation and the ion migration mechanism in layered perovskite (Sr,La)3Fe2O(7-δ).
    Kagomiya I; Jimbo K; Kakimoto K; Nakayama M; Masson O
    Phys Chem Chem Phys; 2014 Jun; 16(22):10875-82. PubMed ID: 24760280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.
    Yang W; Zhang H; Sun C; Liu L; Alonso JA; Fernández-Díaz MT; Chen L
    Inorg Chem; 2015 Apr; 54(7):3477-84. PubMed ID: 25756843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achieving Highly Efficient Carbon Dioxide Electrolysis by
    Yang X; Sun W; Ma M; Xu C; Ren R; Qiao J; Wang Z; Li Z; Zhen S; Sun K
    ACS Appl Mater Interfaces; 2021 May; 13(17):20060-20069. PubMed ID: 33886263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells.
    Kim S; Jun A; Kwon O; Kim J; Yoo S; Jeong HY; Shin J; Kim G
    ChemSusChem; 2015 Sep; 8(18):3153-8. PubMed ID: 26227300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo₂O
    Bernuy-Lopez C; Høydalsvik K; Einarsrud MA; Grande T
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excellent Electrochemical Performance of La
    Hou Y; Wang L; Bian L; Wang Y; Chou KC
    ACS Appl Mater Interfaces; 2021 May; 13(19):22381-22390. PubMed ID: 33955728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design, Synthesis, Structure and Properties of Ba-Doped Derivatives of SrCo
    Sydyknazar S; Cascos V; Troncoso L; Larralde AL; Fernández-Díaz MT; Alonso JA
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31216661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells.
    Li M; Wang Y; Wang Y; Chen F; Xia C
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11286-94. PubMed ID: 24971668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved electrochemical stability at the surface of La(0.8)Sr(0.2)CoO3 achieved by surface chemical modification.
    Tsvetkov N; Lu Q; Yildiz B
    Faraday Discuss; 2015; 182():257-69. PubMed ID: 26227310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.
    Muñoz-García AB; Ritzmann AM; Pavone M; Keith JA; Carter EA
    Acc Chem Res; 2014 Nov; 47(11):3340-8. PubMed ID: 24972154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perovskite Oxyfluoride Ceramic with In Situ Exsolved Ni-Fe Nanoparticles for Direct CO
    Zhang S; Jiang Y; Han H; Li Y; Xia C
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28854-28864. PubMed ID: 35727035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt-Free Double Perovskite Oxide as a Promising Cathode for Solid Oxide Fuel Cells.
    Zhang B; Zhang S; Han H; Tang K; Xia C
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8253-8262. PubMed ID: 36734332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed conductivity, nonstoichiometric oxygen, and oxygen permeation properties in Co-Doped Sr3Ti2O(7-δ).
    Nuansaeng S; Yashima M; Matsuka M; Ishihara T
    Chemistry; 2011 Sep; 17(40):11324-31. PubMed ID: 21850721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization by neutron diffraction of 2D oxygen diffusion in the Sr(0.7)Ho(0.3)CoO(3-δ) cathode for solid-oxide fuel cells.
    Cascos V; Martínez-Coronado R; Alonso JA; Fernández-Díaz MT
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9194-200. PubMed ID: 24873238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.