BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 26247711)

  • 21. AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte Protrusion During Zebrafish Heart Regeneration.
    Beisaw A; Kuenne C; Guenther S; Dallmann J; Wu CC; Bentsen M; Looso M; Stainier DYR
    Circ Res; 2020 Jun; 126(12):1760-1778. PubMed ID: 32312172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of microRNA during cardiomyocyte maturation in sheep.
    Morrison JL; Zhang S; Tellam RL; Brooks DA; McMillen IC; Porrello ER; Botting KJ
    BMC Genomics; 2015 Jul; 16(1):541. PubMed ID: 26198574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiomyocytes re-enter the cell cycle and contribute to heart development after differentiation from cardiac progenitors expressing Isl1 in chick embryo.
    Hayashi S; Inoue A
    Dev Growth Differ; 2007 Apr; 49(3):229-39. PubMed ID: 17394601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myocardial plasticity: cardiac development, regeneration and disease.
    Bloomekatz J; Galvez-Santisteban M; Chi NC
    Curr Opin Genet Dev; 2016 Oct; 40():120-130. PubMed ID: 27498024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can the cardiomyocyte cell cycle be reprogrammed?
    Bicknell KA; Coxon CH; Brooks G
    J Mol Cell Cardiol; 2007 Apr; 42(4):706-21. PubMed ID: 17362983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Migration of cardiomyocytes is essential for heart regeneration in zebrafish.
    Itou J; Oishi I; Kawakami H; Glass TJ; Richter J; Johnson A; Lund TC; Kawakami Y
    Development; 2012 Nov; 139(22):4133-42. PubMed ID: 23034636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Genetic Cardiomyocyte Ablation Model for the Study of Heart Regeneration in Zebrafish.
    Sun F; Shoffner AR; Poss KD
    Methods Mol Biol; 2021; 2158():71-80. PubMed ID: 32857367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SPD-2/CEP192 and CDK Are Limiting for Microtubule-Organizing Center Function at the Centrosome.
    Yang R; Feldman JL
    Curr Biol; 2015 Jul; 25(14):1924-31. PubMed ID: 26119750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development.
    Dorr KM; Amin NM; Kuchenbrod LM; Labiner H; Charpentier MS; Pevny LH; Wessels A; Conlon FL
    Development; 2015 Jun; 142(11):2037-47. PubMed ID: 25953344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair.
    Magadum A; Ding Y; He L; Kim T; Vasudevarao MD; Long Q; Yang K; Wickramasinghe N; Renikunta HV; Dubois N; Weidinger G; Yang Q; Engel FB
    Cell Res; 2017 Aug; 27(8):1002-1019. PubMed ID: 28621328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TWEAK is a positive regulator of cardiomyocyte proliferation.
    Novoyatleva T; Diehl F; van Amerongen MJ; Patra C; Ferrazzi F; Bellazzi R; Engel FB
    Cardiovasc Res; 2010 Mar; 85(4):681-90. PubMed ID: 19887380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.
    Burridge PW; Sharma A; Wu JC
    Annu Rev Genet; 2015; 49():461-84. PubMed ID: 26631515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient cardiomyocyte fusion regulates cardiac development in zebrafish.
    Sawamiphak S; Kontarakis Z; Filosa A; Reischauer S; Stainier DYR
    Nat Commun; 2017 Nov; 8(1):1525. PubMed ID: 29142194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebrafish heart regeneration: Factors that stimulate cardiomyocyte proliferation.
    Zuppo DA; Tsang M
    Semin Cell Dev Biol; 2020 Apr; 100():3-10. PubMed ID: 31563389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI).
    Alvarez R; Wang BJ; Quijada PJ; Avitabile D; Ho T; Shaitrit M; Chavarria M; Firouzi F; Ebeid D; Monsanto MM; Navarrete N; Moshref M; Siddiqi S; Broughton KM; Bailey BA; Gude NA; Sussman MA
    J Mol Cell Cardiol; 2019 Feb; 127():154-164. PubMed ID: 30571978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Adult resident cardiomyocytes wake up: new axis for cardiac tissue regeneration].
    Mias C; Genet G; Pathak A; Sénard JM; Galés C
    Med Sci (Paris); 2012 Dec; 28(12):1103-9. PubMed ID: 23290411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell cycle regulation in mouse heart during embryonic and postnatal stages.
    Ikenishi A; Okayama H; Iwamoto N; Yoshitome S; Tane S; Nakamura K; Obayashi T; Hayashi T; Takeuchi T
    Dev Growth Differ; 2012 Oct; 54(8):731-8. PubMed ID: 22957921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways.
    Blankesteijn WM
    Mol Pharmacol; 2020 Feb; 97(2):90-101. PubMed ID: 31757861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction.
    Sun L; Yu J; Qi S; Hao Y; Liu Y; Li Z
    J Cell Biochem; 2014 Nov; 115(11):1868-76. PubMed ID: 24906204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thymosin β4 and prothymosin α promote cardiac regeneration post-ischaemic injury in mice.
    Gladka MM; Johansen AKZ; van Kampen SJ; Peters MMC; Molenaar B; Versteeg D; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Cardiovasc Res; 2023 May; 119(3):802-812. PubMed ID: 36125329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.