BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26248008)

  • 1. Antioxidant Gallic Acid-Functionalized Biodegradable in Situ Gelling Copolymers for Cytoprotective Antiglaucoma Drug Delivery Systems.
    Lai JY; Luo LJ
    Biomacromolecules; 2015 Sep; 16(9):2950-63. PubMed ID: 26248008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.
    Chou SF; Luo LJ; Lai JY
    Acta Biomater; 2016 Jul; 38():116-28. PubMed ID: 27130273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits.
    Chou SF; Luo LJ; Lai JY
    Sci Rep; 2017 Feb; 7():42344. PubMed ID: 28186167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery.
    Luo LJ; Lai JY
    Acta Biomater; 2017 Feb; 49():344-357. PubMed ID: 27890728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine.
    Lai JY; Hsieh AC
    Biomaterials; 2012 Mar; 33(7):2372-87. PubMed ID: 22182746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery.
    Chou SF; Luo LJ; Lai JY; Ma DH
    Int J Pharm; 2016 Sep; 511(1):30-43. PubMed ID: 27374201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration.
    Lai JY; Luo LJ
    Eur J Pharm Biopharm; 2017 Apr; 113():140-148. PubMed ID: 28088634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio.
    Lai JY
    Drug Des Devel Ther; 2013; 7():1273-85. PubMed ID: 24187486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems.
    Luo LJ; Lai JY
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():897-909. PubMed ID: 30813096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers.
    Luo LJ; Huang CC; Chen HC; Lai JY; Matsusaki M
    Carbohydr Polym; 2018 Oct; 197():375-384. PubMed ID: 30007625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment.
    Lee CH; Li YJ; Huang CC; Lai JY
    Nanoscale; 2017 Aug; 9(32):11754-11764. PubMed ID: 28782783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives.
    Lu Z; Nie G; Belton PS; Tang H; Zhao B
    Neurochem Int; 2006 Mar; 48(4):263-74. PubMed ID: 16343693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system.
    Famili A; Kahook MY; Park D
    Macromol Biosci; 2014 Dec; 14(12):1719-29. PubMed ID: 25187427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome.
    Luo LJ; Lai JY
    Sci Rep; 2017 Aug; 7(1):9380. PubMed ID: 28839279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma.
    Nguyen DD; Luo LJ; Lai JY
    Acta Biomater; 2020 Jul; 111():302-315. PubMed ID: 32428681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of thermoreversible in situ gelling system of forskolin for the treatment of glaucoma.
    Gupta S; Samanta MK
    Pharm Dev Technol; 2010; 15(4):386-93. PubMed ID: 19772380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer.
    Xie M; Hu B; Wang Y; Zeng X
    J Agric Food Chem; 2014 Sep; 62(37):9128-36. PubMed ID: 25198516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core.
    Deng H; Zhang Y; Wang X; Jianhuazhang ; Cao Y; Liu J; Liu J; Deng L; Dong A
    Acta Biomater; 2015 Jan; 11():126-36. PubMed ID: 25288518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative efficacy of pilocarpine, timolol and latanoprost in experimental models of glaucoma.
    Gupta SK; Agarwal R; Galpalli ND; Srivastava S; Agrawal SS; Saxena R
    Methods Find Exp Clin Pharmacol; 2007 Dec; 29(10):665-71. PubMed ID: 18200329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration.
    Cheng YH; Yang SH; Lin FH
    Biomaterials; 2011 Oct; 32(29):6953-61. PubMed ID: 21774981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.