These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 26248008)
1. Antioxidant Gallic Acid-Functionalized Biodegradable in Situ Gelling Copolymers for Cytoprotective Antiglaucoma Drug Delivery Systems. Lai JY; Luo LJ Biomacromolecules; 2015 Sep; 16(9):2950-63. PubMed ID: 26248008 [TBL] [Abstract][Full Text] [Related]
2. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers. Chou SF; Luo LJ; Lai JY Acta Biomater; 2016 Jul; 38():116-28. PubMed ID: 27130273 [TBL] [Abstract][Full Text] [Related]
3. In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits. Chou SF; Luo LJ; Lai JY Sci Rep; 2017 Feb; 7():42344. PubMed ID: 28186167 [TBL] [Abstract][Full Text] [Related]
4. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery. Luo LJ; Lai JY Acta Biomater; 2017 Feb; 49():344-357. PubMed ID: 27890728 [TBL] [Abstract][Full Text] [Related]
5. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Lai JY; Hsieh AC Biomaterials; 2012 Mar; 33(7):2372-87. PubMed ID: 22182746 [TBL] [Abstract][Full Text] [Related]
6. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery. Chou SF; Luo LJ; Lai JY; Ma DH Int J Pharm; 2016 Sep; 511(1):30-43. PubMed ID: 27374201 [TBL] [Abstract][Full Text] [Related]
7. Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration. Lai JY; Luo LJ Eur J Pharm Biopharm; 2017 Apr; 113():140-148. PubMed ID: 28088634 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio. Lai JY Drug Des Devel Ther; 2013; 7():1273-85. PubMed ID: 24187486 [TBL] [Abstract][Full Text] [Related]
9. Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. Luo LJ; Lai JY Mater Sci Eng C Mater Biol Appl; 2019 May; 98():897-909. PubMed ID: 30813096 [TBL] [Abstract][Full Text] [Related]
10. Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Luo LJ; Huang CC; Chen HC; Lai JY; Matsusaki M Carbohydr Polym; 2018 Oct; 197():375-384. PubMed ID: 30007625 [TBL] [Abstract][Full Text] [Related]
11. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Lee CH; Li YJ; Huang CC; Lai JY Nanoscale; 2017 Aug; 9(32):11754-11764. PubMed ID: 28782783 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Lu Z; Nie G; Belton PS; Tang H; Zhao B Neurochem Int; 2006 Mar; 48(4):263-74. PubMed ID: 16343693 [TBL] [Abstract][Full Text] [Related]
13. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system. Famili A; Kahook MY; Park D Macromol Biosci; 2014 Dec; 14(12):1719-29. PubMed ID: 25187427 [TBL] [Abstract][Full Text] [Related]
14. Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome. Luo LJ; Lai JY Sci Rep; 2017 Aug; 7(1):9380. PubMed ID: 28839279 [TBL] [Abstract][Full Text] [Related]
15. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Nguyen DD; Luo LJ; Lai JY Acta Biomater; 2020 Jul; 111():302-315. PubMed ID: 32428681 [TBL] [Abstract][Full Text] [Related]
16. Design and evaluation of thermoreversible in situ gelling system of forskolin for the treatment of glaucoma. Gupta S; Samanta MK Pharm Dev Technol; 2010; 15(4):386-93. PubMed ID: 19772380 [TBL] [Abstract][Full Text] [Related]
17. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. Xie M; Hu B; Wang Y; Zeng X J Agric Food Chem; 2014 Sep; 62(37):9128-36. PubMed ID: 25198516 [TBL] [Abstract][Full Text] [Related]
18. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Deng H; Zhang Y; Wang X; Jianhuazhang ; Cao Y; Liu J; Liu J; Deng L; Dong A Acta Biomater; 2015 Jan; 11():126-36. PubMed ID: 25288518 [TBL] [Abstract][Full Text] [Related]
19. Comparative efficacy of pilocarpine, timolol and latanoprost in experimental models of glaucoma. Gupta SK; Agarwal R; Galpalli ND; Srivastava S; Agrawal SS; Saxena R Methods Find Exp Clin Pharmacol; 2007 Dec; 29(10):665-71. PubMed ID: 18200329 [TBL] [Abstract][Full Text] [Related]
20. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Cheng YH; Yang SH; Lin FH Biomaterials; 2011 Oct; 32(29):6953-61. PubMed ID: 21774981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]