These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
683 related articles for article (PubMed ID: 26248014)
21. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Park SH; De Angelis AA; Nevzorov AA; Wu CH; Opella SJ Biophys J; 2006 Oct; 91(8):3032-42. PubMed ID: 16861273 [TBL] [Abstract][Full Text] [Related]
22. 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Bechinger B; Skladnev DA; Ogrel A; Li X; Rogozhkina EV; Ovchinnikova TV; O'Neil JD; Raap J Biochemistry; 2001 Aug; 40(31):9428-37. PubMed ID: 11478913 [TBL] [Abstract][Full Text] [Related]
23. Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol. Gibbs N; Sessions RB; Williams PB; Dempsey CE Biophys J; 1997 Jun; 72(6):2490-5. PubMed ID: 9168025 [TBL] [Abstract][Full Text] [Related]
24. Solid-state NMR and simulation studies of equinatoxin II N-terminus interaction with lipid bilayers. Lam YH; Hung A; Norton RS; Separovic F; Watts A Proteins; 2010 Mar; 78(4):858-72. PubMed ID: 19847922 [TBL] [Abstract][Full Text] [Related]
25. Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A. Smith R; Thomas DE; Separovic F; Atkins AR; Cornell BA Biophys J; 1989 Aug; 56(2):307-14. PubMed ID: 2476189 [TBL] [Abstract][Full Text] [Related]
26. A (13)C NMR study on [3-(13)C]-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled transmembrane peptides of bacteriorhodopsin in lipid bilayers: insertion, rigid-body motions, and local conformational fluctuations at ambient temperature. Kimura S; Naito A; Tuzi S; Saitô H Biopolymers; 2001 Jan; 58(1):78-88. PubMed ID: 11072231 [TBL] [Abstract][Full Text] [Related]
27. Molecular dynamics simulation of conformational flexibility of alamethicin fragments in aqueous and membranous environment. Kothekar V; Mahajan K; Raha K; Gupta D J Biomol Struct Dyn; 1996 Dec; 14(3):303-16. PubMed ID: 9016408 [TBL] [Abstract][Full Text] [Related]
28. Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations. Hansen SK; Vestergaard M; Thøgersen L; Schiøtt B; Nielsen NC; Vosegaard T J Phys Chem B; 2014 May; 118(19):5119-29. PubMed ID: 24738559 [TBL] [Abstract][Full Text] [Related]
29. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures. Angelova A; Ionov R; Koch MH; Rapp G Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049 [TBL] [Abstract][Full Text] [Related]
30. Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes. Kouzayha A; Nasir MN; Buchet R; Wattraint O; Sarazin C; Besson F J Phys Chem B; 2009 May; 113(19):7012-9. PubMed ID: 19419221 [TBL] [Abstract][Full Text] [Related]
31. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Bernèche S; Nina M; Roux B Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504 [TBL] [Abstract][Full Text] [Related]
32. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers. Saint N; Marri L; Marchini D; Molle G Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210 [TBL] [Abstract][Full Text] [Related]
33. Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Marassi FM; Opella SJ; Juvvadi P; Merrifield RB Biophys J; 1999 Dec; 77(6):3152-5. PubMed ID: 10585936 [TBL] [Abstract][Full Text] [Related]
34. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property. Kovacs FA; Denny JK; Song Z; Quine JR; Cross TA J Mol Biol; 2000 Jan; 295(1):117-25. PubMed ID: 10623512 [TBL] [Abstract][Full Text] [Related]
35. Alamethicin in bicelles: orientation, aggregation, and bilayer modification as a function of peptide concentration. Bortolus M; De Zotti M; Formaggio F; Maniero AL Biochim Biophys Acta; 2013 Nov; 1828(11):2620-7. PubMed ID: 23860254 [TBL] [Abstract][Full Text] [Related]
36. Interaction of alamethicin pores in DMPC bilayers. Constantin D; Brotons G; Jarre A; Li C; Salditt T Biophys J; 2007 Jun; 92(11):3978-87. PubMed ID: 17369412 [TBL] [Abstract][Full Text] [Related]
37. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide. Su Z; Shodiev M; Leitch JJ; Abbasi F; Lipkowski J Langmuir; 2018 May; 34(21):6249-6260. PubMed ID: 29722994 [TBL] [Abstract][Full Text] [Related]
38. Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alpha-factor receptor in phospholipid bilayers. Valentine KG; Liu SF; Marassi FM; Veglia G; Opella SJ; Ding FX; Wang SH; Arshava B; Becker JM; Naider F Biopolymers; 2001 Oct; 59(4):243-56. PubMed ID: 11473349 [TBL] [Abstract][Full Text] [Related]
39. Interaction of alamethicin with ether-linked phospholipid bilayers: oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry studies. Dave PC; Billington E; Pan YL; Straus SK Biophys J; 2005 Oct; 89(4):2434-42. PubMed ID: 16055546 [TBL] [Abstract][Full Text] [Related]
40. Conformation and dynamics of the [3-(13)C]Ala, [1-(13)C]Val-labeled truncated pharaonis transducer, pHtrII(1-159), as revealed by site-directed (13)C solid-state NMR: changes due to association with phoborhodopsin (sensory rhodopsin II). Yamaguchi S; Shimono K; Sudo Y; Tuzi S; Naito A; Kamo N; Saitô H Biophys J; 2004 May; 86(5):3131-40. PubMed ID: 15111426 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]