These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 26248165)
41. The application of nanofibrous scaffolds in neural tissue engineering. Cao H; Liu T; Chew SY Adv Drug Deliv Rev; 2009 Oct; 61(12):1055-64. PubMed ID: 19643156 [TBL] [Abstract][Full Text] [Related]
42. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Rahmani A; Nadri S; Kazemi HS; Mortazavi Y; Sojoodi M Artif Organs; 2019 Aug; 43(8):780-790. PubMed ID: 30674064 [TBL] [Abstract][Full Text] [Related]
43. Musculoskeletal Tissue Engineering Using Fibrous Biomaterials. Tan G; Zhou Y; Sooriyaarachchi D Methods Mol Biol; 2021; 2193():31-40. PubMed ID: 32808256 [TBL] [Abstract][Full Text] [Related]
44. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Fu W; Liu Z; Feng B; Hu R; He X; Wang H; Yin M; Huang H; Zhang H; Wang W Int J Nanomedicine; 2014; 9():2335-44. PubMed ID: 24872696 [TBL] [Abstract][Full Text] [Related]
46. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081 [TBL] [Abstract][Full Text] [Related]
47. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Barber JG; Handorf AM; Allee TJ; Li WJ Tissue Eng Part A; 2013 Jun; 19(11-12):1265-74. PubMed ID: 21895485 [TBL] [Abstract][Full Text] [Related]
48. Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function. Bansal S; Mandalapu S; Aeppli C; Qu F; Szczesny SE; Mauck RL; Zgonis MH Acta Biomater; 2017 Jul; 56():102-109. PubMed ID: 28159718 [TBL] [Abstract][Full Text] [Related]
49. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. Wang X; Ding Y; Li H; Mo X; Wu J J Biomed Mater Res B Appl Biomater; 2022 Apr; 110(4):923-949. PubMed ID: 34619021 [TBL] [Abstract][Full Text] [Related]
50. Bi-layer scaffold of chitosan/PCL-nanofibrous mat and PLLA-microporous disc for skin tissue engineering. Lou T; Leung M; Wang X; Chang JY; Tsao CT; Sham JG; Edmondson D; Zhang M J Biomed Nanotechnol; 2014 Jun; 10(6):1105-13. PubMed ID: 24749404 [TBL] [Abstract][Full Text] [Related]
51. Anisotropic cytocompatible electrospun scaffold for tendon tissue engineering elicits limited inflammatory response in vitro. Fotticchia A; Musson D; Lenardi C; Demirci E; Liu Y J Biomater Appl; 2018 Jul; 33(1):127-139. PubMed ID: 29987990 [TBL] [Abstract][Full Text] [Related]
52. Development of a decellularized meniscus matrix-based nanofibrous scaffold for meniscus tissue engineering. Xia B; Kim DH; Bansal S; Bae Y; Mauck RL; Heo SJ Acta Biomater; 2021 Jul; 128():175-185. PubMed ID: 33823327 [TBL] [Abstract][Full Text] [Related]
53. Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. Wang X; Zhu J; Sun B; Jin Q; Li H; Xia C; Wang H; Mo X; Wu J J Biomed Mater Res B Appl Biomater; 2021 Feb; 109(2):201-213. PubMed ID: 32761755 [TBL] [Abstract][Full Text] [Related]
54. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850 [TBL] [Abstract][Full Text] [Related]
55. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160 [TBL] [Abstract][Full Text] [Related]
56. Pauly HM; Sathy BN; Olvera D; McCarthy HO; Kelly DJ; Popat KC; Dunne NJ; Haut Donahue TL Tissue Eng Part A; 2017 Aug; 23(15-16):823-836. PubMed ID: 28350237 [TBL] [Abstract][Full Text] [Related]
57. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Jiang W; Li L; Zhang D; Huang S; Jing Z; Wu Y; Zhao Z; Zhao L; Zhou S Acta Biomater; 2015 Oct; 25():240-52. PubMed ID: 26188325 [TBL] [Abstract][Full Text] [Related]
58. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Huang B; Zhuang Y; Li CQ; Liu LT; Zhou Y Spine (Phila Pa 1976); 2011 Dec; 36(26):2252-9. PubMed ID: 21358466 [TBL] [Abstract][Full Text] [Related]
59. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Shah S; Yin PT; Uehara TM; Chueng ST; Yang L; Lee KB Adv Mater; 2014 Jun; 26(22):3673-80. PubMed ID: 24668911 [No Abstract] [Full Text] [Related]
60. Engineered microporosity: enhancing the early regenerative potential of decellularized temporomandibular joint discs. Juran CM; Dolwick MF; McFetridge PS Tissue Eng Part A; 2015 Feb; 21(3-4):829-39. PubMed ID: 25319941 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]