These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 26248226)
41. The effect of dietary nickel on the immune responses of Spodoptera litura Fabricius larvae. Sun HX; Dang Z; Xia Q; Tang WC; Zhang GR J Insect Physiol; 2011 Jul; 57(7):954-61. PubMed ID: 21540035 [TBL] [Abstract][Full Text] [Related]
42. Copper-induced H Lu K; Cheng Y; Li W; Ni H; Chen X; Li Y; Tang B; Li Y; Chen D; Zeng R; Song Y Pestic Biochem Physiol; 2019 Sep; 159():118-126. PubMed ID: 31400773 [TBL] [Abstract][Full Text] [Related]
43. Biotransformation of (+)-Carvone and (-)-Carvone by the Common Cutworm Spodoptera litura Larvae. Marumoto S; Okuno Y; Hagiwara Y; Miyazawa M J Oleo Sci; 2018 Oct; 67(10):1253-1257. PubMed ID: 30210079 [TBL] [Abstract][Full Text] [Related]
44. Comparative response of Spodoptera litura challenged per os with Serratia marcescens strains differing in virulence. Aggarwal C; Paul S; Nain V; Tripathi V; Paul B; Aslam Khan M J Invertebr Pathol; 2021 Jul; 183():107562. PubMed ID: 33652013 [TBL] [Abstract][Full Text] [Related]
45. Reproduction and development of Spodoptera exigua from cadmium and control strains under differentiated cadmium stress. Płachetka-Bożek A; Kafel A; Augustyniak M Ecotoxicol Environ Saf; 2018 Dec; 166():138-145. PubMed ID: 30265877 [TBL] [Abstract][Full Text] [Related]
46. Ultrastructural study of liver and lead tissue concentrations in young mallard ducks (Anas platyrhynchos) after ingestion of single lead shot. Pineau A; Fauconneau B; Plouzeau E; Fernandez B; Quellard N; Levillain P; Guillard O J Toxicol Environ Health A; 2017; 80(3):188-195. PubMed ID: 28277035 [TBL] [Abstract][Full Text] [Related]
47. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Song F; Chen C; Wu S; Shao E; Li M; Guan X; Huang Z Sci Rep; 2016 Mar; 6():23861. PubMed ID: 27025647 [TBL] [Abstract][Full Text] [Related]
48. Target and non-target response of Swietenia Mahagoni Jacq. chemical constituents against tobacco cutworm Spodoptera litura Fab. and earthworm, Eudrilus eugeniae Kinb. Dinesh-Kumar A; Srimaan E; Chellappandian M; Vasantha-Srinivasan P; Karthi S; Thanigaivel A; Ponsankar A; Muthu-Pandian Chanthini K; Shyam-Sundar N; Annamalai M; Kalaivani K; Hunter WB; Senthil-Nathan S Chemosphere; 2018 May; 199():35-43. PubMed ID: 29428514 [TBL] [Abstract][Full Text] [Related]
49. Exposure to herbicides reduces larval sensitivity to insecticides in Spodoptera litura (Lepidoptera: Noctuidae). Liu SW; Elzaki MEA; Staehelin C; Ma ZH; Qin Z; Wang RL Insect Sci; 2019 Aug; 26(4):711-720. PubMed ID: 30239122 [TBL] [Abstract][Full Text] [Related]
50. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Tuan SJ; Lee CC; Chi H Pest Manag Sci; 2014 May; 70(5):805-13. PubMed ID: 23893943 [TBL] [Abstract][Full Text] [Related]
51. [Accumulation of lead in Spodoptera exigua (Hübner) and its impact on the population]. Hu MM; Cai WC; Su HH; Yang YZ Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):1145-50. PubMed ID: 25011311 [TBL] [Abstract][Full Text] [Related]
52. Biotransformation of alpha-terpineol by the larvae of common cutworm (Spodoptera litura). Miyazawa M; Ohsawa M J Agric Food Chem; 2002 Aug; 50(17):4916-8. PubMed ID: 12166982 [TBL] [Abstract][Full Text] [Related]
53. The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. Senthil-Nathan S; Choi MY; Paik CH; Kalaivani K Chemosphere; 2008 Jul; 72(9):1393-400. PubMed ID: 18499224 [TBL] [Abstract][Full Text] [Related]
54. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ponsankar A; Vasantha-Srinivasan P; Senthil-Nathan S; Thanigaivel A; Edwin ES; Selin-Rani S; Kalaivani K; Hunter WB; Alessandro RT; Abdel-Megeed A; Paik CH; Duraipandiyan V; Al-Dhabi NA Ecotoxicol Environ Saf; 2016 Nov; 133():260-70. PubMed ID: 27476000 [TBL] [Abstract][Full Text] [Related]
55. Growth Performance and Biometric Characteristics of Spodoptera litura (Lepidoptera: Noctuidae) Reared on Different Host Plants. Tuan SJ; Li NJ; Yeh CC J Econ Entomol; 2015 Oct; 108(5):2242-9. PubMed ID: 26453712 [TBL] [Abstract][Full Text] [Related]
56. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides. Wang RL; Zhu-Salzman K; Baerson SR; Xin XW; Li J; Su YJ; Zeng RS Insect Sci; 2017 Apr; 24(2):235-247. PubMed ID: 26782704 [TBL] [Abstract][Full Text] [Related]
57. Peroxiredoxin 5 from common cutworm (Spodoptera litura) acts as a potent antioxidant enzyme. Wan H; Kang T; Zhan S; You H; Zhu F; Lee KS; Zhao H; Jin BR; Li J Comp Biochem Physiol B Biochem Mol Biol; 2014 Sep; 175():53-61. PubMed ID: 24998343 [TBL] [Abstract][Full Text] [Related]
58. Ribavirin, a nucleoside with potential insecticidal activity. Liu YQ; Zhang J; Feng G; Li LH; Yang L; Kou L Pest Manag Sci; 2012 Oct; 68(10):1400-4. PubMed ID: 22653609 [TBL] [Abstract][Full Text] [Related]
59. Biotransformation of isoflavones by the larvae of the common cutworm (Spodoptera litura). Takahashi K; Araki H; Miyazawa M Chem Pharm Bull (Tokyo); 2006 May; 54(5):719-21. PubMed ID: 16651777 [TBL] [Abstract][Full Text] [Related]
60. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. Aggarwal C; Paul S; Tripathi V; Paul B; Khan MA J Invertebr Pathol; 2017 Feb; 143():115-123. PubMed ID: 27993620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]