These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26248273)

  • 1. A deconvolution-based approach to identifying large-scale effective connectivity.
    Bush K; Zhou S; Cisler J; Bian J; Hazaroglu O; Gillispie K; Yoshigoe K; Kilts C
    Magn Reson Imaging; 2015 Dec; 33(10):1290-1298. PubMed ID: 26248273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis.
    Bush K; Cisler J; Bian J; Hazaroglu G; Hazaroglu O; Kilts C
    Magn Reson Imaging; 2015 Dec; 33(10):1314-1323. PubMed ID: 26226647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconvolution filtering: temporal smoothing revisited.
    Bush K; Cisler J
    Magn Reson Imaging; 2014 Jul; 32(6):721-35. PubMed ID: 24768215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding neural events from fMRI BOLD signal: a comparison of existing approaches and development of a new algorithm.
    Bush K; Cisler J
    Magn Reson Imaging; 2013 Jul; 31(6):976-89. PubMed ID: 23602664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic framework for brain connectivity from functional MR images.
    Rajapakse JC; Wang Y; Zheng X; Zhou J
    IEEE Trans Med Imaging; 2008 Jun; 27(6):825-33. PubMed ID: 18541489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the importance of modeling fMRI transients when estimating effective connectivity: A dynamic causal modeling study using ASL data.
    Havlicek M; Roebroeck A; Friston KJ; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2017 Jul; 155():217-233. PubMed ID: 28323165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis.
    Deleus F; Van Hulle MM
    J Neurosci Methods; 2011 Apr; 197(1):143-57. PubMed ID: 21277327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point-Process Deconvolution of fMRI BOLD Signal Reveals Effective Connectivity Alterations in Chronic Pain Patients.
    Wu GR; Marinazzo D
    Brain Topogr; 2015 Jul; 28(4):541-7. PubMed ID: 25281022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectivity mapping using the ferromagnetic Potts spin model.
    Stanberry L; Murua A; Cordes D
    Hum Brain Mapp; 2008 Apr; 29(4):422-40. PubMed ID: 17497627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity.
    Whitlow CT; Casanova R; Maldjian JA
    Radiology; 2011 May; 259(2):516-24. PubMed ID: 21406628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional connectivity: studying nonlinear, delayed interactions between BOLD signals.
    Lahaye PJ; Poline JB; Flandin G; Dodel S; Garnero L
    Neuroimage; 2003 Oct; 20(2):962-74. PubMed ID: 14568466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome.
    Zöller D; Schaer M; Scariati E; Padula MC; Eliez S; Van De Ville D
    Neuroimage; 2017 Apr; 149():85-97. PubMed ID: 28143774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of hemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI.
    Bielczyk NZ; Llera A; Buitelaar JK; Glennon JC; Beckmann CF
    Brain Behav; 2017 Aug; 7(8):e00777. PubMed ID: 28828228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.