These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2624837)

  • 21. Nail is produced by the normal nail bed: a controversy resolved.
    Johnson M; Comaish JS; Shuster S
    Br J Dermatol; 1991 Jul; 125(1):27-9. PubMed ID: 1873199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasound structure of the human nail plate.
    Jemec GB; Serup J
    Arch Dermatol; 1989 May; 125(5):643-6. PubMed ID: 2653225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring transepidermal water loss: a comparative in vivo study of condenser-chamber, unventilated-chamber and open-chamber systems.
    Farahmand S; Tien L; Hui X; Maibach HI
    Skin Res Technol; 2009 Nov; 15(4):392-8. PubMed ID: 19832948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography.
    Mogensen M; Thomsen JB; Skovgaard LT; Jemec GB
    Br J Dermatol; 2007 Nov; 157(5):894-900. PubMed ID: 17714567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of transepidermal water loss in patients with and without hyperhidrosis by closed-chamber measurer in an air-conditioned environment.
    Miotto A; Honda PAA; Bachichi TG; Holanda CS; Evangelista Neto E; Perfeito JAJ; Leão LEV; Costa ADS
    Einstein (Sao Paulo); 2018 Nov; 16(4):eAO4312. PubMed ID: 30427484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic study on nail plate assessment: differences in nail plate shape, thickness, power Doppler signal and scanning approach.
    Bellinato F; Gisondi P; Filippucci E; Tozzi F; Fassio A; Adami G; Idolazzi L
    Arch Dermatol Res; 2023 Apr; 315(3):593-600. PubMed ID: 36271200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter.
    De Paepe K; Houben E; Adam R; Wiesemann F; Rogiers V
    Skin Res Technol; 2005 Feb; 11(1):61-9. PubMed ID: 15691261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound velocity in human fingernail and effects of hydration: validation of in vivo nail thickness measurement techniques.
    Finlay AY; Western B; Edwards C
    Br J Dermatol; 1990 Sep; 123(3):365-73. PubMed ID: 2206974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models.
    Fluhr JW; Feingold KR; Elias PM
    Exp Dermatol; 2006 Jul; 15(7):483-92. PubMed ID: 16761956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound transmission time: an in vivo guide to nail thickness.
    Finlay AY; Moseley H; Duggan TC
    Br J Dermatol; 1987 Dec; 117(6):765-70. PubMed ID: 3322359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of two different neonatal skin care practices and their influence on transepidermal water loss in healthy newborns within first 10 days of life.
    Raboni R; Patrizi A; Cocchi G; Faldella G; Raone B
    Minerva Pediatr; 2014 Oct; 66(5):369-74. PubMed ID: 25253185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proximal nail plate destruction in subungual melanoma could be a possible predictor of invasiveness thicker than 1.25 mm.
    Kim JY; Kim MB; Park BC; Chung KY; Kim YC; Yun SJ; Won CH; Han MH; Lee WK; Lee SJ
    J Dermatol; 2018 Jan; 45(1):83-86. PubMed ID: 28862344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous formation of nail along the bed.
    Johnson M; Shuster S
    Br J Dermatol; 1993 Mar; 128(3):277-80. PubMed ID: 8471510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transepidermal water loss during sleep in infants.
    Kahn A; Rebuffat E; Blum D; Sottiaux M; Van de Merckt C; Dramaix M; Montauk L
    Sleep; 1987 Apr; 10(2):111-5. PubMed ID: 3589323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semipermeable dressing and transepidermal water loss in premature infants.
    Vernon HJ; Lane AT; Wischerath LJ; Davis JM; Menegus MA
    Pediatrics; 1990 Sep; 86(3):357-62. PubMed ID: 2388784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.
    Algiert-Zielińska B; Batory M; Skubalski J; Rotsztejn H
    Int J Dermatol; 2017 Nov; 56(11):1192-1197. PubMed ID: 28884805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the measuring efficacy of transepidermal water loss of a reasonably priced, portable closed-chamber system device H4500 with that of rather expensive, conventional devices such as Tewameter
    Kikuchi K; Asano M; Tagami H; Kato M; Aiba S
    Skin Res Technol; 2017 Nov; 23(4):597-601. PubMed ID: 28517733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphopathological aspects of healthy nails and nails affected by onychomycosis.
    Zaikovska O; Pilmane M; Kisis J
    Mycoses; 2014 Sep; 57(9):531-6. PubMed ID: 24661598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physicochemical characterization of the human nail: I. Pressure sealed apparatus for measuring nail plate permeabilities.
    Walters KA; Flynn GL; Marvel JR
    J Invest Dermatol; 1981 Feb; 76(2):76-9. PubMed ID: 7462680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related differences in tissue dielectric constant values of female forearm skin measured noninvasively at 300 MHz.
    Mayrovitz HN; Singh A; Akolkar S
    Skin Res Technol; 2016 May; 22(2):189-95. PubMed ID: 26038154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.