BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26248574)

  • 1. CO₂ controlled flocculation of microalgae using pH responsive cellulose nanocrystals.
    Eyley S; Vandamme D; Lama S; Van den Mooter G; Muylaert K; Thielemans W
    Nanoscale; 2015 Sep; 7(34):14413-21. PubMed ID: 26248574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris.
    Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W
    Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting of marine microalgae using cationic cellulose nanocrystals.
    Verfaillie A; Blockx J; Praveenkumar R; Thielemans W; Muylaert K
    Carbohydr Polym; 2020 Jul; 240():116165. PubMed ID: 32475603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH.
    Huang Y; Wei C; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2019 Mar; 276():133-139. PubMed ID: 30623867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant.
    Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T
    Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.
    Bayat Tork M; Khalilzadeh R; Kouchakzadeh H
    Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation.
    Vandamme D; Foubert I; Fraeye I; Muylaert K
    Bioresour Technol; 2012 Nov; 124():508-11. PubMed ID: 23010213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae.
    Gorin KV; Sergeeva YE; Butylin VV; Komova AV; Pojidaev VM; Badranova GU; Shapovalova AA; Konova IA; Gotovtsev PM
    Bioresour Technol; 2015 Oct; 193():178-84. PubMed ID: 26133475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An auto-flocculation strategy for Chlorella vulgaris.
    Shen Y; Fan Z; Chen C; Xu X
    Biotechnol Lett; 2015 Jan; 37(1):75-80. PubMed ID: 25208747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals.
    Tang J; Lee MF; Zhang W; Zhao B; Berry RM; Tam KC
    Biomacromolecules; 2014 Aug; 15(8):3052-60. PubMed ID: 24983405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications.
    Vandamme D; Foubert I; Fraeye I; Meesschaert B; Muylaert K
    Bioresour Technol; 2012 Feb; 105():114-9. PubMed ID: 22182473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization.
    Akhlaghi SP; Zaman M; Mohammed N; Brinatti C; Batmaz R; Berry R; Loh W; Tam KC
    Carbohydr Res; 2015 May; 409():48-55. PubMed ID: 25933198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flocculation of Chlorella vulgaris with alum and pH adjustment.
    Mohseni F; Moosavi Zenooz A
    Biotechnol Appl Biochem; 2022 Jun; 69(3):1112-1120. PubMed ID: 34036645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of nanoparticular and soluble anionic celluloses in coagulation-flocculation treatment of kaolin suspension.
    Liimatainen H; Sirviö J; Sundman O; Hormi O; Niinimäki J
    Water Res; 2012 May; 46(7):2159-66. PubMed ID: 22341833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies.
    Suparmaniam U; Lam MK; Uemura Y; Shuit SH; Lim JW; Show PL; Lee KT; Matsumura Y; Le PTK
    Sci Total Environ; 2020 Feb; 702():134995. PubMed ID: 31710849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous surface functionalization and drug loading: A novel method for fabrication of cellulose nanocrystals-based pH responsive drug delivery system.
    Long W; Ouyang H; Zhou C; Wan W; Yu S; Qian K; Liu M; Zhang X; Feng Y; Wei Y
    Int J Biol Macromol; 2021 Jul; 182():2066-2075. PubMed ID: 34087297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyacrylamide and poly(N,N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension.
    Liu T; Ding E; Xue F
    Int J Biol Macromol; 2017 Oct; 103():1107-1112. PubMed ID: 28528941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization.
    Zoppe JO; Habibi Y; Rojas OJ; Venditti RA; Johansson LS; Efimenko K; Osterberg M; Laine J
    Biomacromolecules; 2010 Oct; 11(10):2683-91. PubMed ID: 20843063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.