BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26248574)

  • 21. High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris.
    Castrillo M; Lucas-Salas LM; Rodríguez-Gil C; Martínez D
    Bioresour Technol; 2013 Jan; 128():324-9. PubMed ID: 23201513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium.
    Wu Z; Zhu Y; Huang W; Zhang C; Li T; Zhang Y; Li A
    Bioresour Technol; 2012 Apr; 110():496-502. PubMed ID: 22326335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harvesting Chlorella vulgaris by magnetic flocculation using Fe₃O₄ coating with polyaluminium chloride and polyacrylamide.
    Zhao Y; Liang W; Liu L; Li F; Fan Q; Sun X
    Bioresour Technol; 2015 Dec; 198():789-96. PubMed ID: 26454365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency of CO2 fixation by microalgae in a closed raceway pond.
    Li S; Luo S; Guo R
    Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.
    Aguirre AM; Bassi A
    Biotechnol Bioeng; 2013 Aug; 110(8):2114-22. PubMed ID: 23436332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of alkaline flocculation by algal organic matter for Chlorella vulgaris.
    Vandamme D; Beuckels A; Vadelius E; Depraetere O; Noppe W; Dutta A; Foubert I; Laurens L; Muylaert K
    Water Res; 2016 Jan; 88():301-307. PubMed ID: 26512808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation.
    Yoo C; La HJ; Kim SC; Oh HM
    Biotechnol Bioeng; 2015 Feb; 112(2):288-96. PubMed ID: 25182602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting.
    Zhang C; Wang X; Wang Y; Li Y; Zhou D; Jia Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5653-60. PubMed ID: 27102131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical approach to alkaline flocculation of Chlorella vulgaris induced by calcium phosphate precipitates.
    Branyikova I; Filipenska M; Urbanova K; Ruzicka MC; Pivokonsky M; Branyik T
    Colloids Surf B Biointerfaces; 2018 Jun; 166():54-60. PubMed ID: 29544128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals.
    Chen L; Cao W; Grishkewich N; Berry RM; Tam KC
    J Colloid Interface Sci; 2015 Jul; 450():101-108. PubMed ID: 25801138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition.
    Nguyen TD; Frappart M; Jaouen P; Pruvost J; Bourseau P
    Environ Technol; 2014; 35(9-12):1378-88. PubMed ID: 24701936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO
    Hu L; Xie Q; Tang J; Pan C; Yu G; Tam KC
    Carbohydr Polym; 2021 Mar; 256():117558. PubMed ID: 33483060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycine betaine grafted nanocellulose as an effective and bio-based cationic nanocellulose flocculant for wastewater treatment and microalgal harvesting.
    Blockx J; Verfaillie A; Deschaume O; Bartic C; Muylaert K; Thielemans W
    Nanoscale Adv; 2021 Jul; 3(14):4133-4144. PubMed ID: 36132828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer's yeast.
    Prochazkova G; Kastanek P; Branyik T
    Bioresour Technol; 2015 Feb; 177():28-33. PubMed ID: 25479390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocellulose size regulates microalgal flocculation and lipid metabolism.
    Yu SI; Min SK; Shin HS
    Sci Rep; 2016 Oct; 6():35684. PubMed ID: 27796311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the energy barrier between Chlorella vulgaris cells and their interfacial interactions with cationic starch under different pH and ionic strength.
    Wei C; Huang Y; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2020 May; 304():123012. PubMed ID: 32085903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin.
    Lin N; Dufresne A
    Biomacromolecules; 2013 Mar; 14(3):871-80. PubMed ID: 23347071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris.
    Lee J; Cho DH; Ramanan R; Kim BH; Oh HM; Kim HS
    Bioresour Technol; 2013 Mar; 131():195-201. PubMed ID: 23347927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.
    Wong YK; Ho YH; Leung HM; Ho KC; Yau YH; Yung KK
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9102-9110. PubMed ID: 28039627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.