These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 26248648)

  • 1. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics.
    Goodspeed A; Heiser LM; Gray JW; Costello JC
    Mol Cancer Res; 2016 Jan; 14(1):3-13. PubMed ID: 26248648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Nickerson ML; Witte N; Im KM; Turan S; Owens C; Misner K; Tsang SX; Cai Z; Wu S; Dean M; Costello JC; Theodorescu D
    Oncogene; 2017 Jan; 36(1):35-46. PubMed ID: 27270441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro human cell line models to predict clinical response to anticancer drugs.
    Niu N; Wang L
    Pharmacogenomics; 2015; 16(3):273-85. PubMed ID: 25712190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents.
    Sharma SV; Haber DA; Settleman J
    Nat Rev Cancer; 2010 Apr; 10(4):241-53. PubMed ID: 20300105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More than fishing for a cure: The promises and pitfalls of high throughput cancer cell line screens.
    Ling A; Gruener RF; Fessler J; Huang RS
    Pharmacol Ther; 2018 Nov; 191():178-189. PubMed ID: 29953899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening (HTS) of anticancer drug efficacy on a micropillar/microwell chip platform.
    Lee DW; Choi YS; Seo YJ; Lee MY; Jeon SY; Ku B; Kim S; Yi SH; Nam DH
    Anal Chem; 2014 Jan; 86(1):535-42. PubMed ID: 24199994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the specific epigenetic alterations associated with chemo-resistance via reprogramming of cancer cells.
    Kim JJ; Rai R
    Med Hypotheses; 2015 Dec; 85(6):710-4. PubMed ID: 26527497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies.
    Geeleher P; Zhang Z; Wang F; Gruener RF; Nath A; Morrison G; Bhutra S; Grossman RL; Huang RS
    Genome Res; 2017 Oct; 27(10):1743-1751. PubMed ID: 28847918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing solid tumors with cell lines: implications for identifying drug resistance genes in cancer.
    Szakács G; Gottesman MM
    Mol Interv; 2004 Dec; 4(6):323-5. PubMed ID: 15616161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic perspectives on cancer chemotherapy response.
    Liu MZ; McLeod HL; He FZ; Chen XP; Zhou HH; Shu Y; Zhang W
    Pharmacogenomics; 2014 Apr; 15(5):699-715. PubMed ID: 24798726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular target class is predictive of in vitro response profile.
    Greshock J; Bachman KE; Degenhardt YY; Jing J; Wen YH; Eastman S; McNeil E; Moy C; Wegrzyn R; Auger K; Hardwicke MA; Wooster R
    Cancer Res; 2010 May; 70(9):3677-86. PubMed ID: 20406975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational identification of multi-omic correlates of anticancer therapeutic response.
    Stetson LC; Pearl T; Chen Y; Barnholtz-Sloan JS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S2. PubMed ID: 25573145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors.
    Jang IS; Dienstmann R; Margolin AA; Guinney J
    Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic targeting therapies to overcome chemotherapy resistance.
    Balch C; Nephew KP
    Adv Exp Med Biol; 2013; 754():285-311. PubMed ID: 22956507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome signatures of colon carcinoma cell lines.
    Kleivi K; Teixeira MR; Eknaes M; Diep CB; Jakobsen KS; Hamelin R; Lothe RA
    Cancer Genet Cytogenet; 2004 Dec; 155(2):119-31. PubMed ID: 15571797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the epigenetic code of cancer for therapy.
    Smith LT; Otterson GA; Plass C
    Trends Genet; 2007 Sep; 23(9):449-56. PubMed ID: 17681396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput lung cancer cell line screening for genotype-correlated sensitivity to an EGFR kinase inhibitor.
    McDermott U; Sharma SV; Settleman J
    Methods Enzymol; 2008; 438():331-41. PubMed ID: 18413259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.