BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26248663)

  • 1. Online repetitive transcranial magnetic stimulation (TMS) to the parietal operculum disrupts haptic memory for grasping.
    Cattaneo L; Maule F; Tabarelli D; Brochier T; Barchiesi G
    Hum Brain Mapp; 2015 Nov; 36(11):4262-71. PubMed ID: 26248663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic working memory for grasping: the role of the parietal operculum.
    Maule F; Barchiesi G; Brochier T; Cattaneo L
    Cereb Cortex; 2015 Feb; 25(2):528-37. PubMed ID: 24046082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.
    Monaco S; Gallivan JP; Figley TD; Singhal A; Culham JC
    J Neurosci; 2017 Nov; 37(48):11572-11591. PubMed ID: 29066555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pantomime-grasping: the 'return' of haptic feedback supports the absolute specification of object size.
    Davarpanah Jazi S; Yau M; Westwood DA; Heath M
    Exp Brain Res; 2015 Jul; 233(7):2029-40. PubMed ID: 25869741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study.
    Lega C; Pirruccio M; Bicego M; Parmigiani L; Chelazzi L; Cattaneo L
    J Neurosci; 2020 Aug; 40(35):6790-6800. PubMed ID: 32709693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grasping adjustments to haptic, visual, and visuo-haptic object perturbations are contingent on the sensory modality.
    Camponogara I; Volcic R
    J Neurophysiol; 2019 Dec; 122(6):2614-2620. PubMed ID: 31693442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The left supramarginal gyrus contributes to finger positioning for object use: a neuronavigated transcranial magnetic stimulation study.
    Andres M; Pelgrims B; Olivier E; Vannuscorps G
    Eur J Neurosci; 2017 Dec; 46(12):2835-2843. PubMed ID: 29094500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of activity in the ventral premotor but not the anterior intraparietal area interferes with on-line correction to a haptic perturbation during grasping.
    Schettino LF; Adamovich SV; Bagce H; Yarossi M; Tunik E
    J Neurosci; 2015 Feb; 35(5):2112-7. PubMed ID: 25653367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action.
    Davarpanah Jazi S; Hosang S; Heath M
    Neuropsychologia; 2015 May; 71():91-100. PubMed ID: 25796409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study.
    Breveglieri R; Borgomaneri S; Filippini M; Tessari A; Galletti C; Davare M; Fattori P
    Cereb Cortex; 2023 Apr; 33(9):5122-5134. PubMed ID: 36245221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation.
    Hamidi M; Tononi G; Postle BR
    Neuropsychologia; 2009 Jan; 47(2):295-302. PubMed ID: 18822306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impairing somatosensory working memory using rTMS.
    Auksztulewicz R; Spitzer B; Goltz D; Blankenburg F
    Eur J Neurosci; 2011 Sep; 34(5):839-44. PubMed ID: 21864318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
    Nowak DA; Grefkes C; Dafotakis M; Eickhoff S; Küst J; Karbe H; Fink GR
    Arch Neurol; 2008 Jun; 65(6):741-7. PubMed ID: 18541794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force.
    Dafotakis M; Sparing R; Eickhoff SB; Fink GR; Nowak DA
    Brain Res; 2008 Sep; 1228():73-80. PubMed ID: 18601912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential roles of primary somatosensory cortex and posterior parietal cortex in tactile-visual cross-modal working memory: a single-pulse transcranial magnetic stimulation (spTMS) study.
    Ku Y; Zhao D; Hao N; Hu Y; Bodner M; Zhou YD
    Brain Stimul; 2015; 8(1):88-91. PubMed ID: 25278428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex.
    Vesia M; Monteon JA; Sergio LE; Crawford JD
    J Neurophysiol; 2006 Dec; 96(6):3016-27. PubMed ID: 17005619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action-Dependent Processing of Touch in the Human Parietal Operculum and Posterior Insula.
    Limanowski J; Lopes P; Keck J; Baudisch P; Friston K; Blankenburg F
    Cereb Cortex; 2020 Mar; 30(2):607-617. PubMed ID: 31211363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation.
    Rossi S; Pasqualetti P; Zito G; Vecchio F; Cappa SF; Miniussi C; Babiloni C; Rossini PM
    Eur J Neurosci; 2006 Feb; 23(3):793-800. PubMed ID: 16487159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.