These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 26249044)
1. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs. Lai D; Pičmanová M; Abou Hachem M; Motawia MS; Olsen CE; Møller BL; Rook F; Takos AM Plant Mol Biol; 2015 Sep; 89(1-2):21-34. PubMed ID: 26249044 [TBL] [Abstract][Full Text] [Related]
2. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117 [TBL] [Abstract][Full Text] [Related]
3. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution. Lai D; Abou Hachem M; Robson F; Olsen CE; Wang TL; Møller BL; Takos AM; Rook F Plant J; 2014 Jul; 79(2):299-311. PubMed ID: 24861854 [TBL] [Abstract][Full Text] [Related]
4. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. Morant AV; Bjarnholt N; Kragh ME; Kjaergaard CH; Jørgensen K; Paquette SM; Piotrowski M; Imberty A; Olsen CE; Møller BL; Bak S Plant Physiol; 2008 Jul; 147(3):1072-91. PubMed ID: 18467457 [TBL] [Abstract][Full Text] [Related]
5. Diversification of an ancient theme: hydroxynitrile glucosides. Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345 [TBL] [Abstract][Full Text] [Related]
6. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799 [TBL] [Abstract][Full Text] [Related]
7. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Li B; Knudsen C; Hansen NK; Jørgensen K; Kannangara R; Bak S; Takos A; Rook F; Hansen SH; Møller BL; Janfelt C; Bjarnholt N Plant J; 2013 Jun; 74(6):1059-71. PubMed ID: 23551340 [TBL] [Abstract][Full Text] [Related]
8. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence. Pentzold S; Zagrobelny M; Roelsgaard PS; Møller BL; Bak S PLoS One; 2014; 9(3):e91337. PubMed ID: 24625698 [TBL] [Abstract][Full Text] [Related]
9. Is protection against florivory consistent with the optimal defense hypothesis? Godschalx AL; Stady L; Watzig B; Ballhorn DJ BMC Plant Biol; 2016 Jan; 16():32. PubMed ID: 26822555 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013 [TBL] [Abstract][Full Text] [Related]
11. Cyanogenesis, a Plant Defence Strategy against Herbivores. Boter M; Diaz I Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108149 [TBL] [Abstract][Full Text] [Related]
12. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns. Franks TK; Hayasaka Y; Choimes S; van Heeswijck R Phytochemistry; 2005 Jan; 66(2):165-73. PubMed ID: 15652573 [TBL] [Abstract][Full Text] [Related]
13. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442 [TBL] [Abstract][Full Text] [Related]
14. Jasmonic acid enhances plant cyanogenesis and resistance to herbivory in lima bean. Kautz S; Trisel JA; Ballhorn DJ J Chem Ecol; 2014 Dec; 40(11-12):1186-96. PubMed ID: 25399357 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.). Knoch E; Motawie MS; Olsen CE; Møller BL; Lyngkjaer MF Plant J; 2016 Oct; 88(2):247-256. PubMed ID: 27337134 [TBL] [Abstract][Full Text] [Related]
16. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Nielsen KA; Hrmova M; Nielsen JN; Forslund K; Ebert S; Olsen CE; Fincher GB; Møller BL Planta; 2006 Apr; 223(5):1010-23. PubMed ID: 16307283 [TBL] [Abstract][Full Text] [Related]
17. Cyanogenesis in plants and arthropods. Zagrobelny M; Bak S; Møller BL Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406 [TBL] [Abstract][Full Text] [Related]
18. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Pentzold S; Jensen MK; Matthes A; Olsen CE; Petersen BL; Clausen H; Møller BL; Bak S; Zagrobelny M R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679 [TBL] [Abstract][Full Text] [Related]
20. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus. Xu S; Luo Y; Cai Z; Cao X; Hu X; Yang J; Luo D J Integr Plant Biol; 2013 Mar; 55(3):221-31. PubMed ID: 23009172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]