These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 26249044)
21. Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus. Chen W; Li X; Tian L; Wu P; Li M; Jiang H; Chen Y; Wu G J Integr Plant Biol; 2014 Nov; 56(11):1034-41. PubMed ID: 24797909 [TBL] [Abstract][Full Text] [Related]
22. Multiple components are integrated to determine leaf complexity in Lotus japonicus. Wang Z; Chen J; Weng L; Li X; Cao X; Hu X; Luo D; Yang J J Integr Plant Biol; 2013 May; 55(5):419-33. PubMed ID: 23331609 [TBL] [Abstract][Full Text] [Related]
23. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. Zagrobelny M; de Castro ÉCP; Møller BL; Bak S Insects; 2018 May; 9(2):. PubMed ID: 29751568 [TBL] [Abstract][Full Text] [Related]
24. The rare cyanogen proteacin, and dhurrin, from foliage of Polyscias australiana, a tropical Araliaceae. Miller RE; Tuck KL Phytochemistry; 2013 Sep; 93():210-5. PubMed ID: 23566716 [TBL] [Abstract][Full Text] [Related]
25. Honeybees Tolerate Cyanogenic Glucosides from Clover Nectar and Flowers. Lecocq A; Green AA; Pinheiro De Castro ÉC; Olsen CE; Jensen AB; Zagrobelny M Insects; 2018 Mar; 9(1):. PubMed ID: 29534004 [TBL] [Abstract][Full Text] [Related]
26. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. Zagrobelny M; Møller BL Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539 [TBL] [Abstract][Full Text] [Related]
27. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus. Arimura G; Ozawa R; Kugimiya S; Takabayashi J; Bohlmann J Plant Physiol; 2004 Aug; 135(4):1976-83. PubMed ID: 15310830 [TBL] [Abstract][Full Text] [Related]
28. Control of petal shape and floral zygomorphy in Lotus japonicus. Feng X; Zhao Z; Tian Z; Xu S; Luo Y; Cai Z; Wang Y; Yang J; Wang Z; Weng L; Chen J; Zheng L; Guo X; Luo J; Sato S; Tabata S; Ma W; Cao X; Hu X; Sun C; Luo D Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4970-5. PubMed ID: 16549774 [TBL] [Abstract][Full Text] [Related]
29. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus. Wang W; Xie ZP; Staehelin C Plant J; 2014 Apr; 78(1):56-69. PubMed ID: 24506212 [TBL] [Abstract][Full Text] [Related]
30. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Saito S; Motawia MS; Olsen CE; Møller BL; Bak S Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904 [TBL] [Abstract][Full Text] [Related]
31. Antiherbivore defenses alter natural selection on plant reproductive traits. Thompson KA; Johnson MT Evolution; 2016 Apr; 70(4):796-810. PubMed ID: 26940904 [TBL] [Abstract][Full Text] [Related]
32. Dissecting the 'bacon and eggs' phenotype: transcriptomics of post-anthesis colour change in Lotus. Boehm MMA; Ojeda DI; Cronk QCB Ann Bot; 2017 Oct; 120(4):563-575. PubMed ID: 28981620 [TBL] [Abstract][Full Text] [Related]
33. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus I: verification of the flowering-associated function of an FT homolog. Yamashino T; Yamawaki S; Hagui E; Ueoka-Nakanishi H; Nakamichi N; Ito S; Mizuno T Biosci Biotechnol Biochem; 2013; 77(4):747-53. PubMed ID: 23563564 [TBL] [Abstract][Full Text] [Related]
34. Cyanogenic glucosides and plant-insect interactions. Zagrobelny M; Bak S; Rasmussen AV; Jørgensen B; Naumann CM; Lindberg Møller B Phytochemistry; 2004 Feb; 65(3):293-306. PubMed ID: 14751300 [TBL] [Abstract][Full Text] [Related]
35. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531 [TBL] [Abstract][Full Text] [Related]
36. Herbivores and plant defences affect selection on plant reproductive traits more strongly than pollinators. Santangelo JS; Thompson KA; Johnson MTJ J Evol Biol; 2019 Jan; 32(1):4-18. PubMed ID: 30339305 [TBL] [Abstract][Full Text] [Related]
37. Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions. Ballhorn DJ; Elias JD Ann Bot; 2014 Aug; 114(2):357-66. PubMed ID: 25006176 [TBL] [Abstract][Full Text] [Related]
39. Floral patterning in Lotus japonicus. Dong ZC; Zhao Z; Liu CW; Luo JH; Yang J; Huang WH; Hu XH; Wang TL; Luo D Plant Physiol; 2005 Apr; 137(4):1272-82. PubMed ID: 15824286 [TBL] [Abstract][Full Text] [Related]
40. Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly. Goverde M; Bazin A; Kéry M; Shykoff JA; Erhardt A Oecologia; 2008 Sep; 157(3):409-18. PubMed ID: 18600348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]