These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26249044)

  • 41. Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations.
    Pentzold S; Zagrobelny M; Bjarnholt N; Kroymann J; Vogel H; Olsen CE; Møller BL; Bak S
    Insect Biochem Mol Biol; 2015 Nov; 66():119-28. PubMed ID: 26483288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenotypic plasticity of cyanogenesis in lima bean Phaseolus lunatus-activity and activation of beta-glucosidase.
    Ballhorn DJ; Heil M; Lieberei R
    J Chem Ecol; 2006 Feb; 32(2):261-75. PubMed ID: 16541336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a Sed5-like SNARE gene LjSYP32-1 that contributes to nodule tissue formation of Lotus japonicus.
    Mai HT; Nomura M; Takegawa K; Asamizu E; Sato S; Kato T; Tabata S; Tajima S
    Plant Cell Physiol; 2006 Jul; 47(7):829-38. PubMed ID: 16699179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Knockdown of LjIPT3 influences nodule development in Lotus japonicus.
    Chen Y; Chen W; Li X; Jiang H; Wu P; Xia K; Yang Y; Wu G
    Plant Cell Physiol; 2014 Jan; 55(1):183-93. PubMed ID: 24285753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.
    Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM
    Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.
    Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS
    Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unique and highly specific cyanogenic glycoside localization in stigmatic cells and pollen in the genus Lomatia (Proteaceae).
    Ritmejerytė E; Boughton BA; Bayly MJ; Miller RE
    Ann Bot; 2020 Aug; 126(3):387-400. PubMed ID: 32157299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data.
    Ballhorn DJ; Lieberei R; Ganzhorn JU
    J Chem Ecol; 2005 Jul; 31(7):1445-73. PubMed ID: 16222786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disentangling hydroxynitrile glucoside biosynthesis in a barley (Hordeum vulgare) metabolon provides access to elite malting barleys for ethyl carbamate-free whisky production.
    Jørgensen ME; Houston K; Jørgensen HJL; Thomsen HC; Tekaat L; Krogh CT; Mellor SB; Braune KB; Damm ML; Pedas PR; Voss C; Rasmussen MW; Nielsen K; Skadhauge B; Motawia MS; Møller BL; Dockter C; Sørensen M
    Plant J; 2024 Jul; 119(1):364-382. PubMed ID: 38652034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosynthesis of cyanogenic glucosides in
    Lai D; Maimann AB; Macea E; Ocampo CH; Cardona G; Pičmanová M; Darbani B; Olsen CE; Debouck D; Raatz B; Møller BL; Rook F
    Plant Direct; 2020 Aug; 4(8):e00244. PubMed ID: 32775954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Florivory as an Opportunity Benefit of Aposematism.
    Higginson AD; Speed MP; Ruxton GD
    Am Nat; 2015 Dec; 186(6):728-41. PubMed ID: 26655980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Different expression patterns of duplicated PHANTASTICA-like genes in Lotus japonicus suggest their divergent functions during compound leaf development.
    Luo JH; Yan J; Weng L; Yang J; Zhao Z; Chen JH; Hu XH; Luo D
    Cell Res; 2005 Aug; 15(8):665-77. PubMed ID: 16117856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor.
    Krothapalli K; Buescher EM; Li X; Brown E; Chapple C; Dilkes BP; Tuinstra MR
    Genetics; 2013 Oct; 195(2):309-18. PubMed ID: 23893483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis.
    Maeda D; Ashida K; Iguchi K; Chechetka SA; Hijikata A; Okusako Y; Deguchi Y; Izui K; Hata S
    Plant Cell Physiol; 2006 Jul; 47(7):807-17. PubMed ID: 16774930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The molecular biology of cyanogenesis.
    Hughes MA; Sharif AL; Dunn MA; Oxtoby E
    Ciba Found Symp; 1988; 140():111-30. PubMed ID: 3149931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases.
    Gleadow RM; Vecchies AC; Woodrow IE
    Phytochemistry; 2003 Jul; 63(6):699-704. PubMed ID: 12842143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield.
    Kongsawadworakul P; Viboonjun U; Romruensukharom P; Chantuma P; Ruderman S; Chrestin H
    Phytochemistry; 2009 Apr; 70(6):730-9. PubMed ID: 19409582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.