These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 26249529)
1. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques. Li S; Tang L; Bi H Luminescence; 2016 Mar; 31(2):442-452. PubMed ID: 26249529 [TBL] [Abstract][Full Text] [Related]
2. Combined multispectroscopic and molecular docking investigation on the interaction between delphinidin-3-O-glucoside and bovine serum albumin. Zuo H; Tang L; Li S; Huang J Luminescence; 2015 Feb; 30(1):110-7. PubMed ID: 24891226 [TBL] [Abstract][Full Text] [Related]
3. Different spectroscopic and molecular modeling studies on the interaction between cyanidin-3-O-glucoside and bovine serum albumin. Tang L; Zhang D; Xu S; Zuo H; Zuo C; Li Y Luminescence; 2014 Mar; 29(2):168-75. PubMed ID: 23723132 [TBL] [Abstract][Full Text] [Related]
4. Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique. Shu Y; Xue W; Xu X; Jia Z; Yao X; Liu S; Liu L Food Chem; 2015 Apr; 173():31-7. PubMed ID: 25465991 [TBL] [Abstract][Full Text] [Related]
5. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight. Durgannavar AK; Patgar MB; Nandibewoor ST; Chimatadar SA Luminescence; 2016 May; 31(3):843-50. PubMed ID: 26387777 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic investigation into the interaction of a diazacyclam-based macrocyclic copper(ii) complex with bovine serum albumin. Shahabadi N; Hakimi M; Morovati T; Hadidi S; Moeini K Luminescence; 2017 Feb; 32(1):43-50. PubMed ID: 27162056 [TBL] [Abstract][Full Text] [Related]
7. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin. Pan DQ; Jiang M; Liu TT; Wang Q; Shi JH Luminescence; 2017 Jun; 32(4):481-490. PubMed ID: 27550396 [TBL] [Abstract][Full Text] [Related]
8. Investigations on the interaction between cuprous oxide nanocubes and bovine serum albumin with comprehensive spectroscopic methods. Ju P; Fan H; Liu T; Cui L; Ai S; Wu X Biol Trace Elem Res; 2011 Dec; 144(1-3):1405-18. PubMed ID: 21625917 [TBL] [Abstract][Full Text] [Related]
9. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu Yousuf I; Bashir M; Arjmand F; Tabassum S J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142 [TBL] [Abstract][Full Text] [Related]
10. Study on the interaction between Cu phen2+3 and bovine serum albumin by spectroscopic methods. Zhang YZ; Zhang XP; Hou HN; Dai J; Liu Y Biol Trace Elem Res; 2008 Mar; 121(3):276-87. PubMed ID: 17960331 [TBL] [Abstract][Full Text] [Related]
11. [Binding interaction of harpagoside and bovine serum albumin: spectroscopic methodologies and molecular docking]. Cao TW; Huang WB; Shi JW; He W Zhongguo Zhong Yao Za Zhi; 2018 Mar; 43(5):993-1000. PubMed ID: 29676099 [TBL] [Abstract][Full Text] [Related]
12. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. Wu J; Bi SY; Sun XY; Zhao R; Wang JH; Zhou HF J Biomol Struct Dyn; 2019 Aug; 37(13):3496-3505. PubMed ID: 30176766 [TBL] [Abstract][Full Text] [Related]
13. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. Shi JH; Zhou KL; Lou YY; Pan DQ Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():362-371. PubMed ID: 28753530 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin. Liu XH; Xi PX; Chen FJ; Xu ZH; Zeng ZZ J Photochem Photobiol B; 2008 Aug; 92(2):98-102. PubMed ID: 18571426 [TBL] [Abstract][Full Text] [Related]
15. Biophysical and molecular docking approaches for the investigation of biomolecular interactions between amphotericin B and bovine serum albumin. Raza M; Ahmad A; Yue F; Khan Z; Jiang Y; Wei Y; Raza S; He WW; Khan FU; Qipeng Y J Photochem Photobiol B; 2017 May; 170():6-15. PubMed ID: 28364684 [TBL] [Abstract][Full Text] [Related]
16. Study on the interaction between a water-soluble dinuclear nickel complex and bovine serum albumin by spectroscopic techniques. Chen Z; Zhang J; Liu C Biometals; 2013 Oct; 26(5):827-38. PubMed ID: 23881359 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the interaction between triclosan and bovine serum albumin by spectroscopic methods. Gu J; Zheng S; Zhao H; Sun T J Environ Sci Health B; 2020; 55(1):52-59. PubMed ID: 31453744 [TBL] [Abstract][Full Text] [Related]
18. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods. Bardajee GR; Hooshyar Z Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487 [TBL] [Abstract][Full Text] [Related]
19. Interaction of cyanidin-3-O-glucoside with three proteins. Tang L; Li S; Bi H; Gao X Food Chem; 2016 Apr; 196():550-9. PubMed ID: 26593527 [TBL] [Abstract][Full Text] [Related]
20. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods. Zhang G; Wang L; Fu P; Hu M Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):424-31. PubMed ID: 21831703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]