These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26249586)

  • 41. Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements.
    Nicoara M; Raduta A; Parthiban R; Locovei C; Eckert J; Stoica M
    Acta Biomater; 2016 May; 36():323-31. PubMed ID: 26979480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low modulus Ti-Nb-Hf alloy for biomedical applications.
    González M; Peña J; Gil FJ; Manero JM
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():691-5. PubMed ID: 25063170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Behaviour of novel low-cost blended elemental Ti-5Fe-xAl alloys fabricated via powder metallurgy.
    Alshammari Y; Manogar B; Raynova S; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103865. PubMed ID: 32501221
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications.
    Zhang F; Weidmann A; Nebe JB; Beck U; Burkel E
    J Biomed Mater Res B Appl Biomater; 2010 Aug; 94(2):406-413. PubMed ID: 20574976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications.
    Hu H; Zhang L; He Z; Jiang Y; Tan J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution.
    Pina VG; Dalmau A; Devesa F; Amigó V; Muñoz AI
    J Mech Behav Biomed Mater; 2015 Jun; 46():59-68. PubMed ID: 25771257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.
    Wang X; Chen Y; Xu L; Xiao S; Kong F; Woo KD
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2074-80. PubMed ID: 22098907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications.
    Zhang Y; Chu K; He S; Wang B; Zhu W; Ren F
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110165. PubMed ID: 31753354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.
    Knaislová A; Novák P; Cygan S; Jaworska L; Cabibbo M
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Jun; 34():66-74. PubMed ID: 24561725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.
    Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR
    J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biocompatibility of Ti-alloys for long-term implantation.
    Abdel-Hady Gepreel M; Niinomi M
    J Mech Behav Biomed Mater; 2013 Apr; 20():407-15. PubMed ID: 23507261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications.
    Fischer M; Laheurte P; Acquier P; Joguet D; Peltier L; Petithory T; Anselme K; Mille P
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():341-348. PubMed ID: 28415471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.