BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 26249807)

  • 1. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and electron microscopic characterization of Super-P based cathodes for Li-O2 batteries.
    Marinaro M; Eswara Moorthy SK; Bernhard J; Jörissen L; Wohlfahrt-Mehrens M; Kaiser U
    Beilstein J Nanotechnol; 2013; 4():665-70. PubMed ID: 24205461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
    Yoo E; Zhou H
    ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Full (Li-Ion)-O
    Hirshberg D; Sharon D; De La Llave E; Afri M; Frimer AA; Kwak WJ; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4352-4361. PubMed ID: 27786463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Au Microlattices as Positive Electrodes for Li-O2 Batteries.
    Xu C; Gallant BM; Wunderlich PU; Lohmann T; Greer JR
    ACS Nano; 2015 Jun; 9(6):5876-83. PubMed ID: 25950649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst and electrolyte synergy in Li-O2 batteries.
    Gittleson FS; Sekol RC; Doubek G; Linardi M; Taylor AD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3230-7. PubMed ID: 24406938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM.
    Sharon D; Etacheri V; Garsuch A; Afri M; Frimer AA; Aurbach D
    J Phys Chem Lett; 2013 Jan; 4(1):127-31. PubMed ID: 26291224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.
    Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Cycle Stability of Rechargeable Li-O
    Yoo E; Zhou H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21307-21313. PubMed ID: 28557414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries.
    Wang C; Yang Y; Liu X; Zhong H; Xu H; Xu Z; Shao H; Ding F
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13694-13702. PubMed ID: 28334524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.
    Schroeder MA; Kumar N; Pearse AJ; Liu C; Lee SB; Rubloff GW; Leung K; Noked M
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11402-11. PubMed ID: 25945948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-Free Cathodes: A Step Forward in the Development of Stable Lithium-Oxygen Batteries.
    Landa-Medrano I; Pinedo R; Ortiz-Vitoriano N; de Larramendi IR; Rojo T
    ChemSusChem; 2015 Dec; 8(23):3932-40. PubMed ID: 26493650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.
    Wu B; Zhang H; Zhou W; Wang M; Li X; Zhang H
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23182-9. PubMed ID: 26400109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.