These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. WSe2 nanoribbons: new high-performance thermoelectric materials. Chen KX; Luo ZY; Mo DC; Lyu SS Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307 [TBL] [Abstract][Full Text] [Related]
28. Electronic and transport properties of boron-doped graphene nanoribbons. Martins TB; Miwa RH; da Silva AJ; Fazzio A Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646 [TBL] [Abstract][Full Text] [Related]
29. High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering. Tran VT; Saint-Martin J; Dollfus P Nanotechnology; 2015 Dec; 26(49):495202. PubMed ID: 26574344 [TBL] [Abstract][Full Text] [Related]
30. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials. Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436 [TBL] [Abstract][Full Text] [Related]
31. Giant magnetoresistance in zigzag MoS2 nanoribbons. Peng L; Yao K; Wu R; Wang S; Zhu S; Ni Y; Zu F; Liu Z; Guo B Phys Chem Chem Phys; 2015 Apr; 17(15):10074-9. PubMed ID: 25785819 [TBL] [Abstract][Full Text] [Related]
32. Spin-filtering and rectification effects in a Z-shaped boron nitride nanoribbon junction. Wan H; Zhou B; Liao W; Zhou G J Chem Phys; 2013 Jan; 138(3):034705. PubMed ID: 23343291 [TBL] [Abstract][Full Text] [Related]
33. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains. García-Fuente A; Gallego LJ; Vega A J Phys Condens Matter; 2015 Apr; 27(13):135301. PubMed ID: 25765052 [TBL] [Abstract][Full Text] [Related]
34. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons. Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366 [TBL] [Abstract][Full Text] [Related]
35. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons. Li YY; Chen MX; Weinert M; Li L Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261 [TBL] [Abstract][Full Text] [Related]
36. Effects of Edge Oxidation on the Structural, Electronic, and Magnetic Properties of Zigzag Boron Nitride Nanoribbons. Krepel D; Hod O J Chem Theory Comput; 2014 Jan; 10(1):373-80. PubMed ID: 26579916 [TBL] [Abstract][Full Text] [Related]
37. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field. Ilyasov VV; Meshi BC; Nguyen VC; Ershov IV; Nguyen DC J Chem Phys; 2014 Jul; 141(1):014708. PubMed ID: 25005304 [TBL] [Abstract][Full Text] [Related]
38. Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study. Chen T; Guo C; Xu L; Li Q; Luo K; Liu D; Wang L; Long M Phys Chem Chem Phys; 2018 Feb; 20(8):5726-5733. PubMed ID: 29411795 [TBL] [Abstract][Full Text] [Related]
39. The Edge Stresses and Phase Transitions for Magnetic BN Zigzag Nanoribbons. Deng J; Yin Y; Niu H; Ding X; Sun J; Medhekar NV Sci Rep; 2017 Aug; 7(1):7855. PubMed ID: 28798346 [TBL] [Abstract][Full Text] [Related]
40. High-yield synthesis of boron nitride nanoribbons via longitudinal splitting of boron nitride nanotubes by potassium vapor. Sinitskii A; Erickson KJ; Lu W; Gibb AL; Zhi C; Bando Y; Golberg D; Zettl A; Tour JM ACS Nano; 2014 Oct; 8(10):9867-73. PubMed ID: 25227319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]