BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26250821)

  • 1. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach.
    Qiu H; Vijver MG; He E; Liu Y; Wang P; Xia B; Smolders E; Versieren L; Peijnenburg WJ
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19213-23. PubMed ID: 26250821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat.
    Wang X; Luo X; Wang Q; Liu Y; Naidu R
    Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.
    Liu Y; Vijver MG; Peijnenburg WJ
    Ecotoxicology; 2014 Apr; 23(3):385-95. PubMed ID: 24510448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).
    Liu Y; Vijver MG; Peijnenburg WJ
    Chemosphere; 2014 Oct; 112():282-8. PubMed ID: 25048917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model.
    Liu A; Li J; Li M; Niu XY; Wang J
    Arch Environ Contam Toxicol; 2017 Feb; 72(2):312-319. PubMed ID: 28050624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions.
    Nagai T; De Schamphelaere KA
    Environ Toxicol Chem; 2016 Nov; 35(11):2765-2773. PubMed ID: 27043471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling toxicity of binary metal mixtures (Cu(2+) -Ag(+) , Cu(2+) -Zn(2+) ) to lettuce, Lactuca sativa, with the biotic ligand model.
    Yen Le TT; Vijver MG; Jan Hendriks A; Peijnenburg WJ
    Environ Toxicol Chem; 2013 Jan; 32(1):137-43. PubMed ID: 23109233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data.
    Jho EH; An J; Nam K
    Environ Toxicol Chem; 2011 Jul; 30(7):1697-703. PubMed ID: 21538486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistically significant deviations from additivity: What do they mean in assessing toxicity of mixtures?
    Liu Y; Vijver MG; Qiu H; Baas J; Peijnenburg WJ
    Ecotoxicol Environ Saf; 2015 Dec; 122():37-44. PubMed ID: 26188643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils.
    Thakali S; Allen HE; Di Toro DM; Ponizovsky AA; Rooney CP; Zhao FJ; McGrath SP
    Environ Sci Technol; 2006 Nov; 40(22):7085-93. PubMed ID: 17154020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves.
    Traudt EM; Ranville JF; Smith SA; Meyer JS
    Environ Toxicol Chem; 2016 Jul; 35(7):1843-51. PubMed ID: 26681657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The toxicity of cadmium-copper mixtures on daphnids and microalgae analyzed using the Biotic Ligand Model.
    Clément B; Felix V; Bertrand V
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):29285-29295. PubMed ID: 34561805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineating the dynamic uptake and toxicity of Ni and Co mixtures in Enchytraeus crypticus using a WHAM-FTOX approach.
    He E; Van Gestel CA
    Chemosphere; 2015 Nov; 139():216-22. PubMed ID: 26134674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.
    Lyu J; Park J; Kumar Pandey L; Choi S; Lee H; De Saeger J; Depuydt S; Han T
    Ecotoxicol Environ Saf; 2018 Mar; 149():225-232. PubMed ID: 29182968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).
    Niyogi S; Nadella SR; Wood CM
    Aquat Toxicol; 2015 Aug; 165():109-19. PubMed ID: 26057931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing?
    Versieren L; Evers S; De Schamphelaere K; Blust R; Smolders E
    Environ Toxicol Chem; 2016 Oct; 35(10):2483-2492. PubMed ID: 26800646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model.
    Le TT; Peijnenburg WJ; Hendriks AJ; Vijver MG
    Environ Toxicol Chem; 2012 Feb; 31(2):355-9. PubMed ID: 22105443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model.
    Tipping E; Lofts S
    Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.