BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26250821)

  • 21. WHAM-F
    Tipping E; Lofts S; Stockdale A
    Aquat Toxicol; 2023 May; 258():106503. PubMed ID: 37001198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Generalized Bioavailability Model (gBAM) for Predicting Chronic Copper Toxicity to Freshwater Fish.
    Nys C; Vlaeminck K; Van Sprang P; De Schamphelaere KAC
    Environ Toxicol Chem; 2020 Dec; 39(12):2424-2436. PubMed ID: 32573793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavioural and biochemical responses to metals tested alone or in mixture (Cd-Cu-Ni-Pb-Zn) in Gammarus fossarum: From a multi-biomarker approach to modelling metal mixture toxicity.
    Lebrun JD; Uher E; Fechner LC
    Aquat Toxicol; 2017 Dec; 193():160-167. PubMed ID: 29096089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers.
    Versieren L; Evers S; AbdElgawad H; Asard H; Smolders E
    Environ Toxicol Chem; 2017 Jan; 36(1):220-230. PubMed ID: 27311849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models.
    Chen BC; Ho PC; Juang KW
    Ecotoxicology; 2013 Jan; 22(1):174-83. PubMed ID: 23138334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu²⁺-Zn²⁺ and Cu²⁺-Ag⁺).
    Le TT; Vijver MG; Kinraide TB; Peijnenburg WJ; Hendriks AJ
    Environ Pollut; 2013 May; 176():185-92. PubMed ID: 23429096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).
    Tipping E; Lofts S
    Environ Toxicol Chem; 2015 Apr; 34(4):788-98. PubMed ID: 25318827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute toxicity of binary-metal mixtures of copper, zinc, and nickel to Pimephales promelas: Evidence of more-than-additive effect.
    Lynch NR; Hoang TC; O'Brien TE
    Environ Toxicol Chem; 2016 Feb; 35(2):446-57. PubMed ID: 26266440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The prediction of combined toxicity of Cu-Ni for barley using an extended concentration addition model.
    Wang X; Meng X; Ma Y; Pu X; Zhong X
    Environ Pollut; 2018 Nov; 242(Pt A):136-142. PubMed ID: 29966837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the effects of binary metal mixtures on short-term uptake of Ag, Cu, and Ni by rainbow trout (Oncorhynchus mykiss).
    Brix KV; Tellis MS; Crémazy A; Wood CM
    Aquat Toxicol; 2016 Nov; 180():236-246. PubMed ID: 27750117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic analysis of freshwater metal toxicity with WHAM-F
    Tipping E; Stockdale A; Lofts S
    Aquat Toxicol; 2019 Jul; 212():128-137. PubMed ID: 31103734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout.
    Iwasaki Y; Kamo M; Naito W
    Environ Toxicol Chem; 2015 Apr; 34(4):754-60. PubMed ID: 25323464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model.
    Kozlova T; Wood CM; McGeer JC
    Aquat Toxicol; 2009 Feb; 91(3):221-8. PubMed ID: 19111357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of Daphnia magna to chronic exposure of cadmium and nickel mixtures.
    Pérez E; Hoang TC
    Chemosphere; 2018 Oct; 208():991-1001. PubMed ID: 30068043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioavailability and phytotoxicity of rare earth metals to Triticum aestivum under various exposure scenarios.
    Gong B; He E; Xia B; Ying R; Peijnenburg WJGM; Liu Y; Qiu H
    Ecotoxicol Environ Saf; 2020 Dec; 205():111346. PubMed ID: 32977285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH.
    Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X
    Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and validation of a metal mixture bioavailability model (MMBM) to predict chronic toxicity of Ni-Zn-Pb mixtures to Ceriodaphnia dubia.
    Nys C; Janssen CR; De Schamphelaere KAC
    Environ Pollut; 2017 Jan; 220(Pt B):1271-1281. PubMed ID: 27838063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity and fate of cadmium in hydroponically cultivated lettuce (Lactuca sativa L.) influenced by microplastics.
    Yu J; Chen J; Li Q; Ren P; Tang Y; Huang R; Lu Y; Chen K
    Ecotoxicol Environ Saf; 2024 Jun; 278():116422. PubMed ID: 38705040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating empirically dissolved organic matter quality for WHAM VI using the DOM optical properties: a case study of Cu-Al-DOM interactions.
    Chappaz A; Curtis PJ
    Environ Sci Technol; 2013 Feb; 47(4):2001-7. PubMed ID: 23331061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.