BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 26251011)

  • 1. Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.
    Barone E; Cenini G; Di Domenico F; Noel T; Wang C; Perluigi M; St Clair DK; Butterfield DA
    J Neurosci Res; 2015 Nov; 93(11):1728-39. PubMed ID: 26251011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B.
    Barone E; Cenini G; Sultana R; Di Domenico F; Fiorini A; Perluigi M; Noel T; Wang C; Mancuso C; St Clair DK; Butterfield DA
    Antioxid Redox Signal; 2012 Jun; 16(12):1407-20. PubMed ID: 22229939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium.
    Reddy VN; Kasahara E; Hiraoka M; Lin LR; Ho YS
    Exp Eye Res; 2004 Dec; 79(6):859-68. PubMed ID: 15642323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.
    Sheshadri P; Kumar A
    Free Radic Res; 2016; 50(5):570-84. PubMed ID: 26899340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice.
    Ganini D; Santos JH; Bonini MG; Mason RP
    Cell Chem Biol; 2018 Apr; 25(4):413-425.e6. PubMed ID: 29398562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria.
    Linares M; Marín-García P; Martínez-Chacón G; Pérez-Benavente S; Puyet A; Diez A; Bautista JM
    Biochim Biophys Acta; 2013 Dec; 1832(12):2009-18. PubMed ID: 23872112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese superoxide dismutase deficiency enhances cell turnover via tumor promoter-induced alterations in AP-1 and p53-mediated pathways in a skin cancer model.
    Zhao Y; Oberley TD; Chaiswing L; Lin SM; Epstein CJ; Huang TT; St Clair D
    Oncogene; 2002 May; 21(24):3836-46. PubMed ID: 12032821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Upregulation of Superoxide Dismutase 2 and Heme Oxygenase 1 by tert-Butylhydroquinone Protects Mitochondria during Oxidative Stress.
    Sun J; Ren X; Simpkins JW
    Mol Pharmacol; 2015 Sep; 88(3):437-49. PubMed ID: 26082377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trichostatin A modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells.
    Jeong SG; Cho GW
    Cell Biochem Funct; 2015 Jan; 33(1):37-43. PubMed ID: 25515622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species.
    Pani G; Koch OR; Galeotti T
    Int J Biochem Cell Biol; 2009 May; 41(5):1002-5. PubMed ID: 18992840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice.
    Williams MD; Van Remmen H; Conrad CC; Huang TT; Epstein CJ; Richardson A
    J Biol Chem; 1998 Oct; 273(43):28510-5. PubMed ID: 9774481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells.
    Pani G; Bedogni B; Anzevino R; Colavitti R; Palazzotti B; Borrello S; Galeotti T
    Cancer Res; 2000 Aug; 60(16):4654-60. PubMed ID: 10969820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase.
    Zhao Y; Chaiswing L; Velez JM; Batinic-Haberle I; Colburn NH; Oberley TD; St Clair DK
    Cancer Res; 2005 May; 65(9):3745-50. PubMed ID: 15867370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells.
    Mai WJ; Yan JL; Wang L; Zheng Y; Xin Y; Wang WN
    Aquat Toxicol; 2010 Nov; 100(3):271-81. PubMed ID: 20739073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis.
    Hussain SP; Amstad P; He P; Robles A; Lupold S; Kaneko I; Ichimiya M; Sengupta S; Mechanic L; Okamura S; Hofseth LJ; Moake M; Nagashima M; Forrester KS; Harris CC
    Cancer Res; 2004 Apr; 64(7):2350-6. PubMed ID: 15059885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells.
    Kikusato M; Yoshida H; Furukawa K; Toyomizu M
    J Therm Biol; 2015 Aug; 52():8-13. PubMed ID: 26267493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS.
    Holley AK; Dhar SK; St Clair DK
    Mitochondrion; 2010 Nov; 10(6):649-61. PubMed ID: 20601193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease.
    Wen JJ; Garg NJ
    PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006687. PubMed ID: 30044789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding roles of superoxide dismutases in cell regulation and cancer.
    Che M; Wang R; Li X; Wang HY; Zheng XFS
    Drug Discov Today; 2016 Jan; 21(1):143-149. PubMed ID: 26475962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage.
    O'Brien KM; Dirmeier R; Engle M; Poyton RO
    J Biol Chem; 2004 Dec; 279(50):51817-27. PubMed ID: 15385544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.