These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 26251011)

  • 1. Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.
    Barone E; Cenini G; Di Domenico F; Noel T; Wang C; Perluigi M; St Clair DK; Butterfield DA
    J Neurosci Res; 2015 Nov; 93(11):1728-39. PubMed ID: 26251011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B.
    Barone E; Cenini G; Sultana R; Di Domenico F; Fiorini A; Perluigi M; Noel T; Wang C; Mancuso C; St Clair DK; Butterfield DA
    Antioxid Redox Signal; 2012 Jun; 16(12):1407-20. PubMed ID: 22229939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium.
    Reddy VN; Kasahara E; Hiraoka M; Lin LR; Ho YS
    Exp Eye Res; 2004 Dec; 79(6):859-68. PubMed ID: 15642323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.
    Sheshadri P; Kumar A
    Free Radic Res; 2016; 50(5):570-84. PubMed ID: 26899340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice.
    Ganini D; Santos JH; Bonini MG; Mason RP
    Cell Chem Biol; 2018 Apr; 25(4):413-425.e6. PubMed ID: 29398562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria.
    Linares M; Marín-García P; Martínez-Chacón G; Pérez-Benavente S; Puyet A; Diez A; Bautista JM
    Biochim Biophys Acta; 2013 Dec; 1832(12):2009-18. PubMed ID: 23872112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese superoxide dismutase deficiency enhances cell turnover via tumor promoter-induced alterations in AP-1 and p53-mediated pathways in a skin cancer model.
    Zhao Y; Oberley TD; Chaiswing L; Lin SM; Epstein CJ; Huang TT; St Clair D
    Oncogene; 2002 May; 21(24):3836-46. PubMed ID: 12032821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Upregulation of Superoxide Dismutase 2 and Heme Oxygenase 1 by tert-Butylhydroquinone Protects Mitochondria during Oxidative Stress.
    Sun J; Ren X; Simpkins JW
    Mol Pharmacol; 2015 Sep; 88(3):437-49. PubMed ID: 26082377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trichostatin A modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells.
    Jeong SG; Cho GW
    Cell Biochem Funct; 2015 Jan; 33(1):37-43. PubMed ID: 25515622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species.
    Pani G; Koch OR; Galeotti T
    Int J Biochem Cell Biol; 2009 May; 41(5):1002-5. PubMed ID: 18992840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice.
    Williams MD; Van Remmen H; Conrad CC; Huang TT; Epstein CJ; Richardson A
    J Biol Chem; 1998 Oct; 273(43):28510-5. PubMed ID: 9774481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells.
    Pani G; Bedogni B; Anzevino R; Colavitti R; Palazzotti B; Borrello S; Galeotti T
    Cancer Res; 2000 Aug; 60(16):4654-60. PubMed ID: 10969820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase.
    Zhao Y; Chaiswing L; Velez JM; Batinic-Haberle I; Colburn NH; Oberley TD; St Clair DK
    Cancer Res; 2005 May; 65(9):3745-50. PubMed ID: 15867370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells.
    Mai WJ; Yan JL; Wang L; Zheng Y; Xin Y; Wang WN
    Aquat Toxicol; 2010 Nov; 100(3):271-81. PubMed ID: 20739073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis.
    Hussain SP; Amstad P; He P; Robles A; Lupold S; Kaneko I; Ichimiya M; Sengupta S; Mechanic L; Okamura S; Hofseth LJ; Moake M; Nagashima M; Forrester KS; Harris CC
    Cancer Res; 2004 Apr; 64(7):2350-6. PubMed ID: 15059885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells.
    Kikusato M; Yoshida H; Furukawa K; Toyomizu M
    J Therm Biol; 2015 Aug; 52():8-13. PubMed ID: 26267493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS.
    Holley AK; Dhar SK; St Clair DK
    Mitochondrion; 2010 Nov; 10(6):649-61. PubMed ID: 20601193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease.
    Wen JJ; Garg NJ
    PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006687. PubMed ID: 30044789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding roles of superoxide dismutases in cell regulation and cancer.
    Che M; Wang R; Li X; Wang HY; Zheng XFS
    Drug Discov Today; 2016 Jan; 21(1):143-149. PubMed ID: 26475962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage.
    O'Brien KM; Dirmeier R; Engle M; Poyton RO
    J Biol Chem; 2004 Dec; 279(50):51817-27. PubMed ID: 15385544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.