BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26251150)

  • 1. [Genetic analysis of hereditary hematological disorders: overview].
    Yoshida K; Ogawa S
    Rinsho Ketsueki; 2015 Jul; 56(7):861-6. PubMed ID: 26251150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utility of next-generation sequencing technologies for the efficient genetic resolution of haematological disorders.
    Zhang J; Barbaro P; Guo Y; Alodaib A; Li J; Gold W; Adès L; Keating BJ; Xu X; Teo J; Hakonarson H; Christodoulou J
    Clin Genet; 2016 Feb; 89(2):163-72. PubMed ID: 25703294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation sequencing using a pre-designed gene panel for the molecular diagnosis of congenital disorders in pediatric patients.
    Lim EC; Brett M; Lai AH; Lee SP; Tan ES; Jamuar SS; Ng IS; Tan EC
    Hum Genomics; 2015 Dec; 9():33. PubMed ID: 26666243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions.
    Lelieveld SH; Spielmann M; Mundlos S; Veltman JA; Gilissen C
    Hum Mutat; 2015 Aug; 36(8):815-22. PubMed ID: 25973577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical sequencing: is WGS the better WES?
    Meienberg J; Bruggmann R; Oexle K; Matyas G
    Hum Genet; 2016 Mar; 135(3):359-62. PubMed ID: 26742503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-exome sequencing and its impact in hereditary hearing loss.
    Atik T; Bademci G; Diaz-Horta O; Blanton SH; Tekin M
    Genet Res (Camb); 2015 Mar; 97():e4. PubMed ID: 25825321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replicate exome-sequencing in a multiple-generation family: improved interpretation of next-generation sequencing data.
    Cherukuri PF; Maduro V; Fuentes-Fajardo KV; Lam K; ; Adams DR; Tifft CJ; Mullikin JC; Gahl WA; Boerkoel CF
    BMC Genomics; 2015 Nov; 16():998. PubMed ID: 26602380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
    Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM
    Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can exome sequencing do for you?
    Majewski J; Schwartzentruber J; Lalonde E; Montpetit A; Jabado N
    J Med Genet; 2011 Sep; 48(9):580-9. PubMed ID: 21730106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exome sequencing: capture and sequencing of all human coding regions for disease gene discovery.
    Priya RR; Rajasimha HK; Brooks MJ; Swaroop A
    Methods Mol Biol; 2012; 884():335-51. PubMed ID: 22688718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular diagnostic testing for congenital disorders of glycosylation (CDG): detection rate for single gene testing and next generation sequencing panel testing.
    Jones MA; Rhodenizer D; da Silva C; Huff IJ; Keong L; Bean LJ; Coffee B; Collins C; Tanner AK; He M; Hegde MR
    Mol Genet Metab; 2013; 110(1-2):78-85. PubMed ID: 23806237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in detecting genetic alterations and their association with human disease.
    Schwartz CE; Chen CF
    J Mol Biol; 2013 Nov; 425(21):3914-8. PubMed ID: 23876707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Disease Susceptibility Alleles in the Next Generation Sequencing Era.
    DiStefano JK; Kingsley CB
    Methods Mol Biol; 2018; 1706():3-16. PubMed ID: 29423790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies.
    Nijman IJ; van Montfrans JM; Hoogstraat M; Boes ML; van de Corput L; Renner ED; van Zon P; van Lieshout S; Elferink MG; van der Burg M; Vermont CL; van der Zwaag B; Janson E; Cuppen E; Ploos van Amstel JK; van Gijn ME
    J Allergy Clin Immunol; 2014 Feb; 133(2):529-34. PubMed ID: 24139496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exome versus transcriptome sequencing in identifying coding region variants.
    Ku CS; Wu M; Cooper DN; Naidoo N; Pawitan Y; Pang B; Iacopetta B; Soong R
    Expert Rev Mol Diagn; 2012 Apr; 12(3):241-51. PubMed ID: 22468815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genome sequencing and personalized medicine: perspectives and limitations].
    Le Gall JY; Debré P;
    Bull Acad Natl Med; 2014 Jan; 198(1):101-17. PubMed ID: 26259290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders.
    Rabbani B; Mahdieh N; Hosomichi K; Nakaoka H; Inoue I
    J Hum Genet; 2012 Oct; 57(10):621-32. PubMed ID: 22832387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of targeted enrichment methodologies for whole-exome sequencing reveals novel pathogenic mutations.
    Miya F; Kato M; Shiohama T; Okamoto N; Saitoh S; Yamasaki M; Shigemizu D; Abe T; Morizono T; Boroevich KA; Kosaki K; Kanemura Y; Tsunoda T
    Sci Rep; 2015 Mar; 5():9331. PubMed ID: 25786579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular defects identified by whole exome sequencing in a child with atypical mucopolysaccharidosis IIIB.
    Zeng Q; Fan Y; Wang L; Huang Z; Gu X; Yu Y
    J Pediatr Endocrinol Metab; 2017 Apr; 30(4):463-469. PubMed ID: 28306536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies.
    Chou J; Ohsumi TK; Geha RS
    Curr Opin Allergy Clin Immunol; 2012 Dec; 12(6):623-8. PubMed ID: 23095910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.