These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26251310)

  • 21. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation.
    Irmisch S; Zeltner P; Handrick V; Gershenzon J; Köllner TG
    BMC Plant Biol; 2015 May; 15():128. PubMed ID: 26017568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant Biology. Hormones and the green revolution.
    Salamini F
    Science; 2003 Oct; 302(5642):71-2. PubMed ID: 14526071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early diversification of plant aquaporins.
    Borstlap AC
    Trends Plant Sci; 2002 Dec; 7(12):529-30. PubMed ID: 12475491
    [No Abstract]   [Full Text] [Related]  

  • 24. Indole-3-acetic acid is synthesized from L-tryptophan in roots of Arabidopsis thaliana.
    Müller A; Hillebrand H; Weiler EW
    Planta; 1998 Oct; 206(3):362-9. PubMed ID: 9763705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays.
    Reinecke DM; Bandurski RS
    Plant Physiol; 1988; 86(3):868-72. PubMed ID: 11538238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana.
    Ouyang J; Shao X; Li J
    Plant J; 2000 Nov; 24(3):327-33. PubMed ID: 11069706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid.
    Reinecke DM; Bandurski RS
    Biochem Biophys Res Commun; 1981 Nov; 103(2):429-33. PubMed ID: 7036993
    [No Abstract]   [Full Text] [Related]  

  • 28. Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana.
    Radwanski ER; Barczak AJ; Last RL
    Mol Gen Genet; 1996 Dec; 253(3):353-61. PubMed ID: 9003322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-fluence red light increases the transport and biosynthesis of auxin.
    Liu X; Cohen JD; Gardner G
    Plant Physiol; 2011 Oct; 157(2):891-904. PubMed ID: 21807888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxin biosynthesis in maize kernels.
    Glawischnig E; Tomas A; Eisenreich W; Spiteller P; Bacher A; Gierl A
    Plant Physiol; 2000 Jul; 123(3):1109-19. PubMed ID: 10889260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.
    Li JF; Chung HS; Niu Y; Bush J; McCormack M; Sheen J
    Plant Cell; 2013 May; 25(5):1507-22. PubMed ID: 23645631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic analysis of putative genes involved in the tryptophan-dependent pathway of auxin biosynthesis in rice.
    Abu-Zaitoon YM
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2480-95. PubMed ID: 24398922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta.
    Wright AD; Moehlenkamp CA; Perrot GH; Neuffer MG; Cone KC
    Plant Cell; 1992 Jun; 4(6):711-9. PubMed ID: 1356534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.
    Sugawara S; Mashiguchi K; Tanaka K; Hishiyama S; Sakai T; Hanada K; Kinoshita-Tsujimura K; Yu H; Dai X; Takebayashi Y; Takeda-Kamiya N; Kakimoto T; Kawaide H; Natsume M; Estelle M; Zhao Y; Hayashi K; Kamiya Y; Kasahara H
    Plant Cell Physiol; 2015 Aug; 56(8):1641-54. PubMed ID: 26076971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reassessing the role of YUCCAs in auxin biosynthesis.
    Ross JJ; Tivendale ND; Reid JB; Davies NW; Molesworth PP; Lowe EK; Smith JA; Davidson SE
    Plant Signal Behav; 2011 Mar; 6(3):437-9. PubMed ID: 21358284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid 7'-O-beta-D-glucopyranoside.
    Nonhebel HM; Kruse LI; Bandurski RS
    J Biol Chem; 1985 Oct; 260(23):12685-9. PubMed ID: 4044604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auxin and Tryptophan Homeostasis Are Facilitated by the ISS1/VAS1 Aromatic Aminotransferase in Arabidopsis.
    Pieck M; Yuan Y; Godfrey J; Fisher C; Zolj S; Vaughan D; Thomas N; Wu C; Ramos J; Lee N; Normanly J; Celenza JL
    Genetics; 2015 Sep; 201(1):185-99. PubMed ID: 26163189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T
    Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auxin patterns Solanum lycopersicum leaf morphogenesis.
    Koenig D; Bayer E; Kang J; Kuhlemeier C; Sinha N
    Development; 2009 Sep; 136(17):2997-3006. PubMed ID: 19666826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes.
    Kulik V; Hartmann E; Weyand M; Frey M; Gierl A; Niks D; Dunn MF; Schlichting I
    J Mol Biol; 2005 Sep; 352(3):608-20. PubMed ID: 16120446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.