These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 26251561)
21. Gas Mass-Transport Coefficients in Ionomer Membranes Using a Microelectrode. Petrovick JG; Radke CJ; Weber AZ ACS Meas Sci Au; 2022 Jun; 2(3):208-218. PubMed ID: 36785864 [TBL] [Abstract][Full Text] [Related]
22. Compact and efficient gas diffusion electrodes based on nanoporous alumina membranes for microfuel cells and gas sensors. Fernandez WV; Tosello RT; Fernández JL Analyst; 2019 Dec; 145(1):122-131. PubMed ID: 31742263 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell. Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465 [TBL] [Abstract][Full Text] [Related]
24. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. Li W; Bonakdarpour A; Gyenge E; Wilkinson DP ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111 [TBL] [Abstract][Full Text] [Related]
25. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells. Narayanamoorthy B; Datta KK; Eswaramoorthy M; Balaji S ACS Appl Mater Interfaces; 2012 Jul; 4(7):3620-6. PubMed ID: 22758652 [TBL] [Abstract][Full Text] [Related]
26. High yield hydrogen production in a single-chamber membrane-less microbial electrolysis cell. Ye Y; Wang L; Chen Y; Zhu S; Shen S Water Sci Technol; 2010; 61(3):721-7. PubMed ID: 20150709 [TBL] [Abstract][Full Text] [Related]
27. Catalytic Reactivation of Industrial Oxygen Depolarized Cathodes by in situ Generation of Atomic Hydrogen. Öhl D; Franzen D; Paulisch M; Dieckhöfer S; Barwe S; Andronescu C; Manke I; Turek T; Schuhmann W ChemSusChem; 2019 Jun; 12(12):2732-2739. PubMed ID: 30908849 [TBL] [Abstract][Full Text] [Related]
28. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells. Liu JH; Jeon MK; Lee KR; Woo SI Phys Chem Chem Phys; 2010 Dec; 12(46):15259-64. PubMed ID: 20944853 [TBL] [Abstract][Full Text] [Related]
29. New electrocatalysts for unitized regenerative fuel cell: Pt-Ir alloy deposited on the proton exchange membrane surface by impregnation-reduction method. Wan CH; Wu CL; Lin MT; Shih C J Nanosci Nanotechnol; 2010 Jul; 10(7):4612-8. PubMed ID: 21128466 [TBL] [Abstract][Full Text] [Related]
30. Modifying Ionic Membranes with Carbon Dots Enables Direct Production of High-Purity Hydrogen through Water Electrolysis. Wang S; Zhang D; Ma X; Liu J; Chen Y; Zhao Y; Han Y ACS Appl Mater Interfaces; 2021 Aug; 13(33):39304-39310. PubMed ID: 34433251 [TBL] [Abstract][Full Text] [Related]
31. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Luo X; Nam JY; Zhang F; Zhang X; Liang P; Huang X; Logan BE Bioresour Technol; 2013 Jul; 140():399-405. PubMed ID: 23711946 [TBL] [Abstract][Full Text] [Related]
32. Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. Zheng W; Lee LYS; Wong KY Nanoscale; 2021 Sep; 13(36):15177-15187. PubMed ID: 34487129 [TBL] [Abstract][Full Text] [Related]
33. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Cheng S; Liu H; Logan BE Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373 [TBL] [Abstract][Full Text] [Related]
34. Mitigating Bubble Traffic in Gas-Evolving Electrodes via Spinodally Derived Architectures. Gross SJ; McDevitt KM; Mumm DR; Mohraz A ACS Appl Mater Interfaces; 2021 Feb; 13(7):8528-8537. PubMed ID: 33555849 [TBL] [Abstract][Full Text] [Related]
35. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Lee HS; Rittmann BE Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379 [TBL] [Abstract][Full Text] [Related]
36. Improving electrokinetic microdevice stability by controlling electrolysis bubbles. Lee HY; Barber C; Minerick AR Electrophoresis; 2014 Jul; 35(12-13):1782-9. PubMed ID: 24648277 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach. Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159 [TBL] [Abstract][Full Text] [Related]
38. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Lee HS; Torres CI; Parameswaran P; Rittmann BE Environ Sci Technol; 2009 Oct; 43(20):7971-6. PubMed ID: 19921922 [TBL] [Abstract][Full Text] [Related]
39. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode. Kim SM; Ahn CY; Cho YH; Kim S; Hwang W; Jang S; Shin S; Lee G; Sung YE; Choi M Sci Rep; 2016 May; 6():26503. PubMed ID: 27210793 [TBL] [Abstract][Full Text] [Related]
40. Killing of total heterotrophic bacteria using the gas diffusion electrode system. Xu WY; Li P Environ Technol; 2012 Jun; 33(10-12):1167-74. PubMed ID: 22856286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]