These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26252196)

  • 21. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
    Baek M; Shin WH; Chung HW; Seok C
    J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Modeling of Small Molecule Ligand Binding Interactions and Affinities.
    Convertino M; Dokholyan NV
    Methods Mol Biol; 2016; 1414():23-32. PubMed ID: 27094283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.
    Kumar A; Zhang KY
    J Chem Inf Model; 2016 Jun; 56(6):965-73. PubMed ID: 26247231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches.
    Fourches D; Muratov E; Ding F; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2013 Aug; 53(8):1915-22. PubMed ID: 23809015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Consensus Docking Strategy to Improve Ligand Pose Prediction.
    Ren X; Shi YS; Zhang Y; Liu B; Zhang LH; Peng YB; Zeng R
    J Chem Inf Model; 2018 Aug; 58(8):1662-1668. PubMed ID: 30044626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions.
    Gathiaka S; Liu S; Chiu M; Yang H; Stuckey JA; Kang YN; Delproposto J; Kubish G; Dunbar JB; Carlson HA; Burley SK; Walters WP; Amaro RE; Feher VA; Gilson MK
    J Comput Aided Mol Des; 2016 Sep; 30(9):651-668. PubMed ID: 27696240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand- and receptor-based docking with LiBELa.
    dos Santos Muniz H; Nascimento AS
    J Comput Aided Mol Des; 2015 Aug; 29(8):713-23. PubMed ID: 26141308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pose prediction approach based on ligand 3D shape similarity.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Jun; 30(6):457-69. PubMed ID: 27379501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy.
    Wu Y; Brooks CL
    J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HarmonyDOCK: the structural analysis of poses in protein-ligand docking.
    Plewczynski D; Philips A; Von Grotthuss M; Rychlewski L; Ginalski K
    J Comput Biol; 2014 Mar; 21(3):247-56. PubMed ID: 21091053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correcting the impact of docking pose generation error on binding affinity prediction.
    Li H; Leung KS; Wong MH; Ballester PJ
    BMC Bioinformatics; 2016 Sep; 17(Suppl 11):308. PubMed ID: 28185549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.