These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26252221)

  • 41. M4T: a comparative protein structure modeling server.
    Fernandez-Fuentes N; Madrid-Aliste CJ; Rai BK; Fajardo JE; Fiser A
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W363-8. PubMed ID: 17517764
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel approach to fold recognition using sequence-derived properties from sets of structurally similar local fragments of proteins.
    Hvidsten TR; Kryshtafovych A; Komorowski J; Fidelis K
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii81-91. PubMed ID: 14534176
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A guide to template based structure prediction.
    Qu X; Swanson R; Day R; Tsai J
    Curr Protein Pept Sci; 2009 Jun; 10(3):270-85. PubMed ID: 19519455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of automatic tools and human expertise in template-based modeling of CASP8 target proteins.
    Venclovas C; Margelevicius M
    Proteins; 2009; 77 Suppl 9():81-8. PubMed ID: 19639635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein structure prediction enhanced with evolutionary diversity: SPEED.
    DeBartolo J; Hocky G; Wilde M; Xu J; Freed KF; Sosnick TR
    Protein Sci; 2010 Mar; 19(3):520-34. PubMed ID: 20066664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling large regions in proteins: applications to loops, termini, and folding.
    Adhikari AN; Peng J; Wilde M; Xu J; Freed KF; Sosnick TR
    Protein Sci; 2012 Jan; 21(1):107-21. PubMed ID: 22095743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment.
    Venclovas Č; Margelevičius M
    Proteins; 2005; 61 Suppl 7():99-105. PubMed ID: 16187350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein structure determination using metagenome sequence data.
    Ovchinnikov S; Park H; Varghese N; Huang PS; Pavlopoulos GA; Kim DE; Kamisetty H; Kyrpides NC; Baker D
    Science; 2017 Jan; 355(6322):294-298. PubMed ID: 28104891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition.
    Wang C; Zhang H; Zheng WM; Xu D; Zhu J; Wang B; Ning K; Sun S; Li SC; Bu D
    Bioinformatics; 2016 Feb; 32(3):462-4. PubMed ID: 26454278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Asymmetric protein design from conserved supersecondary structures.
    ElGamacy M; Coles M; Lupas A
    J Struct Biol; 2018 Dec; 204(3):380-387. PubMed ID: 30558718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions.
    Mortuza SM; Zheng W; Zhang C; Li Y; Pearce R; Zhang Y
    Nat Commun; 2021 Aug; 12(1):5011. PubMed ID: 34408149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Improved Integration of Template-Based and Template-Free Protein Structure Modeling Methods and its Assessment in CASP11.
    Li J; Adhikari B; Cheng J
    Protein Pept Lett; 2015; 22(7):586-93. PubMed ID: 25990081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models.
    Koliński A; Bujnicki JM
    Proteins; 2005; 61 Suppl 7():84-90. PubMed ID: 16187348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement.
    Xu D; Zhang J; Roy A; Zhang Y
    Proteins; 2011; 79 Suppl 10(Suppl 10):147-60. PubMed ID: 22069036
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling complexes of modeled proteins.
    Anishchenko I; Kundrotas PJ; Vakser IA
    Proteins; 2017 Mar; 85(3):470-478. PubMed ID: 27701777
    [TBL] [Abstract][Full Text] [Related]  

  • 57. De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
    Kosciolek T; Jones DT
    PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved scoring function for comparative modeling using the M4T method.
    Rykunov D; Steinberger E; Madrid-Aliste CJ; Fiser A
    J Struct Funct Genomics; 2009 Mar; 10(1):95-9. PubMed ID: 18985440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
    Yang J; Zhang W; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):233-46. PubMed ID: 26343917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.