These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 26252479)
1. Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media. Kumari J; Mathur A; Rajeshwari A; Venkatesan A; S S; Pulimi M; Chandrasekaran N; Nagarajan R; Mukherjee A PLoS One; 2015; 10(8):e0134796. PubMed ID: 26252479 [TBL] [Abstract][Full Text] [Related]
2. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396 [TBL] [Abstract][Full Text] [Related]
3. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Jiang X; Tong M; Kim H J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876 [TBL] [Abstract][Full Text] [Related]
4. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Esfandyari Bayat A; Junin R; Derahman MN; Samad AA Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359 [TBL] [Abstract][Full Text] [Related]
5. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays. Hwang G; Kim D Environ Pollut; 2024 Jun; 351():124007. PubMed ID: 38677461 [TBL] [Abstract][Full Text] [Related]
6. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand. Cai L; Zhu J; Hou Y; Tong M; Kim H J Contam Hydrol; 2015 Oct; 181():153-60. PubMed ID: 25728046 [TBL] [Abstract][Full Text] [Related]
7. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions. Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926 [TBL] [Abstract][Full Text] [Related]
8. Transport of metal oxide nanoparticles in saturated porous media. Ben-Moshe T; Dror I; Berkowitz B Chemosphere; 2010 Sep; 81(3):387-93. PubMed ID: 20678789 [TBL] [Abstract][Full Text] [Related]
9. Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition. Kurlanda-Witek H; Ngwenya BT; Butler IB J Contam Hydrol; 2014 Jul; 162-163():17-26. PubMed ID: 24796515 [TBL] [Abstract][Full Text] [Related]
10. The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads. Kurlanda-Witek H; Ngwenya BT; Butler IB J Contam Hydrol; 2015 Aug; 179():160-70. PubMed ID: 26140853 [TBL] [Abstract][Full Text] [Related]
11. Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Petosa AR; Brennan SJ; Rajput F; Tufenkji N Water Res; 2012 Mar; 46(4):1273-85. PubMed ID: 22236555 [TBL] [Abstract][Full Text] [Related]
12. Synergistic effects of phosphorus and humic acid on the transport of anatase titanium dioxide nanoparticles in water-saturated porous media. Chen M; Xu N; Christodoulatos C; Wang D Environ Pollut; 2018 Dec; 243(Pt B):1368-1375. PubMed ID: 30273863 [TBL] [Abstract][Full Text] [Related]
13. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand. Li L; Schuster M Sci Total Environ; 2014 Feb; 472():971-8. PubMed ID: 24355393 [TBL] [Abstract][Full Text] [Related]
14. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Zhu M; Wang H; Keller AA; Wang T; Li F Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841 [TBL] [Abstract][Full Text] [Related]
15. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Chen G; Liu X; Su C Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737 [TBL] [Abstract][Full Text] [Related]
16. Role of pH and ionic strength in the aggregation of TiO Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of cytogenotoxicity and oxidative stress parameters in male Swiss mice co-exposed to titanium dioxide and zinc oxide nanoparticles. Fadoju O; Ogunsuyi O; Akanni O; Alabi O; Alimba C; Adaramoye O; Cambier S; Eswara S; Gutleb AC; Bakare A Environ Toxicol Pharmacol; 2019 Aug; 70():103204. PubMed ID: 31200344 [TBL] [Abstract][Full Text] [Related]
18. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Cai L; Tong M; Ma H; Kim H Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648 [TBL] [Abstract][Full Text] [Related]
19. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses. Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994 [TBL] [Abstract][Full Text] [Related]
20. Genotoxic effects of zinc oxide nanoparticles in nasal mucosa cells are antagonized by titanium dioxide nanoparticles. Hackenberg S; Scherzed A; Zapp A; Radeloff K; Ginzkey C; Gehrke T; Ickrath P; Kleinsasser N Mutat Res Genet Toxicol Environ Mutagen; 2017 Apr; 816-817():32-37. PubMed ID: 28464994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]