These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26252627)

  • 41. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator.
    Vassiliev ON; Titt U; Kry SF; Pönisch F; Gillin MT; Mohan R
    Med Phys; 2006 Apr; 33(4):820-7. PubMed ID: 16696457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of transmission data of diagnostic X rays through concrete using Monte Carlo simulation.
    Noto K; Koshida K; Iida H; Fukuda A
    Radiat Prot Dosimetry; 2009 Feb; 133(3):144-52. PubMed ID: 19307234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A study on 3D Monte Carlo modeling of photon propagation through tissue.
    Kiymik MK
    J Med Syst; 1995 Aug; 19(4):313-22. PubMed ID: 8522907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy.
    Hoshi Y; Shimada M; Sato C; Iguchi Y
    J Biomed Opt; 2005; 10(6):064032. PubMed ID: 16409097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
    Sakota D; Takatani S
    J Biomed Opt; 2012 May; 17(5):057007. PubMed ID: 22612146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dose reduction of scattered photons from concrete walls lined with lead: Implications for improvement in design of megavoltage radiation therapy facility mazes.
    Al-Affan IA; Hugtenburg RP; Bari DS; Al-Saleh WM; Piliero M; Evans S; Al-Hasan M; Al-Zughul B; Al-Kharouf S; Ghaith A
    Med Phys; 2015 Feb; 42(2):606-614. PubMed ID: 28102603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulation of the point spread function for light in tissue by a Monte Carlo method.
    Van der Zee P; Delpy DT
    Adv Exp Med Biol; 1987; 215():179-91. PubMed ID: 3673719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
    Dhakal KR; Gu L; Shivalingaiah S; Dennis TS; Morris-Bobzean SA; Li T; Perrotti LI; Mohanty SK
    PLoS One; 2014; 9(11):e111488. PubMed ID: 25383687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model.
    Chatterjee S; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3279-82. PubMed ID: 26736992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration.
    Alerstam E; Svensson T; Andersson-Engels S
    J Biomed Opt; 2008; 13(6):060504. PubMed ID: 19123645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.
    Duadi H; Fixler D; Popovtzer R
    J Biomed Opt; 2013 Nov; 18(11):111408. PubMed ID: 23887384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monte Carlo based investigations of electron contamination from telecobalt unit head in build up region and its impact on surface dose.
    Jagtap AS; Palani Selvam T; Patil BJ; Chavan ST; Pethe SN; Kulkarni G; Dahiwale SS; Bhoraskar VN; Dhole SD
    Appl Radiat Isot; 2016 Dec; 118():175-181. PubMed ID: 27642727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
    Orion I; Rosenfeld AB; Dilmanian FA; Telang F; Ren B; Namito Y
    Phys Med Biol; 2000 Sep; 45(9):2497-508. PubMed ID: 11008951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calculation of absorbed dose around a facility for disposing of low activity natural radioactive waste (C3-dump).
    Jansen JT; Zoetelief J
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):428-32. PubMed ID: 16604673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
    Strangman GE; Zhang Q; Li Z
    Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hardware acceleration of a Monte Carlo simulation for photodynamic therapy [corrected] treatment planning.
    Lo WC; Redmond K; Luu J; Chow P; Rose J; Lilge L
    J Biomed Opt; 2009; 14(1):014019. PubMed ID: 19256707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue.
    Tedford CE; DeLapp S; Jacques S; Anders J
    Lasers Surg Med; 2015 Apr; 47(4):312-22. PubMed ID: 25772014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy.
    Martínez-Rovira I; Sempau J; Prezado Y
    Med Phys; 2012 Jan; 39(1):119-31. PubMed ID: 22225281
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.