These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26252705)

  • 1. Radio Frequency Magnetic Field Limits of Nb and Nb_{3}Sn.
    Posen S; Valles N; Liepe M
    Phys Rev Lett; 2015 Jul; 115(4):047001. PubMed ID: 26252705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of Nb
    Sundahl C; Makita J; Welander PB; Su YF; Kametani F; Xie L; Zhang H; Li L; Gurevich A; Eom CB
    Sci Rep; 2021 Apr; 11(1):7770. PubMed ID: 33833275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators.
    Senevirathne IH; Gurevich A; Delayen JR
    Rev Sci Instrum; 2022 May; 93(5):055104. PubMed ID: 35649811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.
    Dhakal P; Ciovati G; Rigby W; Wallace J; Myneni GR
    Rev Sci Instrum; 2012 Jun; 83(6):065105. PubMed ID: 22755660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence of microstructure dependence of magnetic flux trapping in niobium.
    Balachandran S; Polyanskii A; Chetri S; Dhakal P; Su YF; Sung ZH; Lee PJ
    Sci Rep; 2021 Mar; 11(1):5364. PubMed ID: 33686195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.
    Ferracin P; Caspi S; Felice H; Leitner D; Lyneis CM; Prestemon S; Sabbi GL; Todd DS
    Rev Sci Instrum; 2010 Feb; 81(2):02A309. PubMed ID: 20192330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy.
    Kim YJ; Tao R; Klie RF; Seidman DN
    ACS Nano; 2013 Jan; 7(1):732-9. PubMed ID: 23259811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new experiment to enable rapid systematic investigations of flux trapping dynamics for superconducting radio-frequency cavity applications.
    Kramer F; Keckert S; Kugeler O; Knobloch J
    Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39254432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of nano-hydride growth on Nb(100) due to nitrogen doping.
    Veit RD; Farber RG; Sitaraman NS; Arias TA; Sibener SJ
    J Chem Phys; 2020 Jun; 152(21):214703. PubMed ID: 32505166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution diagnostic tools for superconducting radio frequency cavities.
    Parajuli I; Ciovati G; Delayen JR
    Rev Sci Instrum; 2022 Nov; 93(11):113305. PubMed ID: 36461557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.
    Tan T; Wolak MA; Xi XX; Tajima T; Civale L
    Sci Rep; 2016 Oct; 6():35879. PubMed ID: 27775087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field sensors for detection of trapped flux in superconducting radio frequency cavities.
    Parajuli IP; Ciovati G; Delayen JR
    Rev Sci Instrum; 2021 Oct; 92(10):104705. PubMed ID: 34717418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Nanoscale Segregation Mechanism in N-Doped Niobium for Enhanced SRF Performance.
    Chen Z; Zong Y; Chai Y; E M; He Y; Shi S; Cai J; Zhang Q; Li J; Chen J; Liu X; Wang ZJ; Wang D; Liu Z
    Small Methods; 2024 Aug; 8(8):e2301319. PubMed ID: 38178653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No interface energy barrier and increased surface pinning in low temperature baked niobium.
    Turner DA; Burt G; Junginger T
    Sci Rep; 2022 Apr; 12(1):5522. PubMed ID: 35365699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic evaluation of magnetic sensitivities of anisotropic magnetoresistive sensors at liquid helium temperature for superconducting cavities.
    Okada T; Kako E; Konomi T; Masuzawa M; Sakai H; Tsuchiya K; Ueki R; Umemori K; Pizzol P; Poudel A; Tajima T
    Rev Sci Instrum; 2021 Mar; 92(3):035003. PubMed ID: 33820008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes.
    Romanenko A; Schuster DI
    Phys Rev Lett; 2017 Dec; 119(26):264801. PubMed ID: 29328733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-resolved characterization of Meissner screening breakdown in surface treated niobium.
    Thoeng E; Asaduzzaman M; Kolb P; McFadden RML; Morris GD; Ticknor JO; Dunsiger SR; Karner VL; Fujimoto D; Junginger T; Kiefl RF; MacFarlane WA; Li R; Saminathan S; Laxdal RE
    Sci Rep; 2024 Sep; 14(1):21487. PubMed ID: 39277652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new structure of superconducting magnetic system for 50 GHz operations (invited).
    Xie DZ
    Rev Sci Instrum; 2012 Feb; 83(2):02A302. PubMed ID: 22380149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.
    Tsindlekht MI; Genkin VM; Felner I; Zeides F; Katz N; Gazi Š; Chromik Š; Dobrovolskiy OV; Sachser R; Huth M
    J Phys Condens Matter; 2016 Jun; 28(21):215701. PubMed ID: 27143621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging.
    Wiltshire MC; Pendry JB; Young IR; Larkman DJ; Gilderdale DJ; Hajnal JV
    Science; 2001 Feb; 291(5505):849-51. PubMed ID: 11157159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.