These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 26252861)
1. A real-time computational model for estimating kinematics of ankle ligaments. Zhang M; Davies TC; Zhang Y; Xie SQ Comput Methods Biomech Biomed Engin; 2016; 19(8):835-44. PubMed ID: 26252861 [TBL] [Abstract][Full Text] [Related]
2. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation. Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767 [TBL] [Abstract][Full Text] [Related]
3. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. Liacouras PC; Wayne JS J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384 [TBL] [Abstract][Full Text] [Related]
4. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion. Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1254-65. PubMed ID: 26712301 [TBL] [Abstract][Full Text] [Related]
5. An open-source OpenSimĀ® ankle-foot musculoskeletal model for assessment of strains and forces in dense connective tissues. Sikidar A; Kalyanasundaram D Comput Methods Programs Biomed; 2022 Sep; 224():106994. PubMed ID: 35843077 [TBL] [Abstract][Full Text] [Related]
6. A New Trajectory Determination Method for Robot-Assisted Ankle Ligament Rehabilitation. Liu Z; Zhong B; Zhong W; Guo K; Zhang M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5390-5393. PubMed ID: 31947074 [TBL] [Abstract][Full Text] [Related]
7. Number of Segments Within Musculoskeletal Foot Models Influences Ankle Kinematics and Strains of Ligaments and Muscles. Kim H; Kipp K J Orthop Res; 2019 Oct; 37(10):2231-2240. PubMed ID: 31206865 [TBL] [Abstract][Full Text] [Related]
8. Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model. Palazzi E; Siegler S; Balakrishnan V; Leardini A; Caravaggi P; Belvedere C J Biomech; 2020 Jan; 98():109421. PubMed ID: 31653506 [TBL] [Abstract][Full Text] [Related]
9. Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling. Haraguchi N; Armiger RS; Myerson MS; Campbell JT; Chao EY Foot Ankle Int; 2009 Feb; 30(2):177-85. PubMed ID: 19254515 [TBL] [Abstract][Full Text] [Related]
10. Influence of population variability in ligament material properties on the mechanical behavior of ankle: a computational investigation. Liu Y; Zhou Q; Gan S; Nie B Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):43-53. PubMed ID: 31809575 [TBL] [Abstract][Full Text] [Related]
11. Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex. Ozeki S; Kitaoka H; Uchiyama E; Luo ZP; Kaufman K; An KN Foot Ankle Int; 2006 Nov; 27(11):965-9. PubMed ID: 17144961 [TBL] [Abstract][Full Text] [Related]
12. Determination of the in situ mechanical behavior of ankle ligaments. Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW J Mech Behav Biomed Mater; 2017 Jan; 65():502-512. PubMed ID: 27665085 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics of knee ligaments. Woo SL; Debski RE; Withrow JD; Janaushek MA Am J Sports Med; 1999; 27(4):533-43. PubMed ID: 10424228 [TBL] [Abstract][Full Text] [Related]
14. Effect of implementing magnetic resonance imaging for patient-specific OpenSim models on lower-body kinematics and knee ligament lengths. Smale KB; Conconi M; Sancisi N; Krogsgaard M; Alkjaer T; Parenti-Castelli V; Benoit DL J Biomech; 2019 Jan; 83():9-15. PubMed ID: 30527390 [TBL] [Abstract][Full Text] [Related]
16. Specimen-specific computational models of ankle sprains produced in a laboratory setting. Button KD; Wei F; Meyer EG; Haut RC J Biomech Eng; 2013 Apr; 135(4):041001. PubMed ID: 24231896 [TBL] [Abstract][Full Text] [Related]
17. Effect of six degrees of freedom knee kinematics on ligament length and moment arm in an intact knee model. Ozada N Technol Health Care; 2015; 23(4):485-94. PubMed ID: 26409911 [TBL] [Abstract][Full Text] [Related]
18. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580 [TBL] [Abstract][Full Text] [Related]
19. A determination of ankle kinematics using fluoroscopy. Komistek RD; Stiehl JB; Buechel FF; Northcut EJ; Hajner ME Foot Ankle Int; 2000 Apr; 21(4):343-50. PubMed ID: 10808976 [TBL] [Abstract][Full Text] [Related]
20. Searching for the "sweet spot": the foot rotation and parallel engagement of ankle ligaments in maximizing injury tolerance. Nie B; Forman JL; Mait AR; Donlon JP; Panzer MB; Kent RW Biomech Model Mechanobiol; 2017 Dec; 16(6):1937-1945. PubMed ID: 28634682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]