BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26253310)

  • 21. Think like a sponge: The genetic signal of sensory cells in sponges.
    Mah JL; Leys SP
    Dev Biol; 2017 Nov; 431(1):93-100. PubMed ID: 28647138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans.
    Leininger S; Adamski M; Bergum B; Guder C; Liu J; Laplante M; Bråte J; Hoffmann F; Fortunato S; Jordal S; Rapp HT; Adamska M
    Nat Commun; 2014 May; 5():3905. PubMed ID: 24844197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica.
    Adamska M; Larroux C; Adamski M; Green K; Lovas E; Koop D; Richards GS; Zwafink C; Degnan BM
    Evol Dev; 2010; 12(5):494-518. PubMed ID: 20883218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The NK homeobox gene cluster predates the origin of Hox genes.
    Larroux C; Fahey B; Degnan SM; Adamski M; Rokhsar DS; Degnan BM
    Curr Biol; 2007 Apr; 17(8):706-10. PubMed ID: 17379523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The physiology and molecular biology of sponge tissues.
    Leys SP; Hill A
    Adv Mar Biol; 2012; 62():1-56. PubMed ID: 22664120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sponges Lack ParaHox Genes.
    Pastrana CC; DeBiasse MB; Ryan JF
    Genome Biol Evol; 2019 Apr; 11(4):1250-1257. PubMed ID: 30859199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals.
    Wang X; Lavrov DV
    Mol Biol Evol; 2007 Feb; 24(2):363-73. PubMed ID: 17090697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoans.
    Harcet M; Roller M; Cetković H; Perina D; Wiens M; Müller WE; Vlahovicek K
    Mol Biol Evol; 2010 Dec; 27(12):2747-56. PubMed ID: 20621960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges.
    Wiens M; Mangoni A; D'Esposito M; Fattorusso E; Korchagina N; Schröder HC; Grebenjuk VA; Krasko A; Batel R; Müller IM; Müller WE
    J Mol Evol; 2003; 57 Suppl 1():S60-75. PubMed ID: 15008404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Amphimedon queenslandica genome and the evolution of animal complexity.
    Srivastava M; Simakov O; Chapman J; Fahey B; Gauthier ME; Mitros T; Richards GS; Conaco C; Dacre M; Hellsten U; Larroux C; Putnam NH; Stanke M; Adamska M; Darling A; Degnan SM; Oakley TH; Plachetzki DC; Zhai Y; Adamski M; Calcino A; Cummins SF; Goodstein DM; Harris C; Jackson DJ; Leys SP; Shu S; Woodcroft BJ; Vervoort M; Kosik KS; Manning G; Degnan BM; Rokhsar DS
    Nature; 2010 Aug; 466(7307):720-6. PubMed ID: 20686567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution?
    Haen KM; Lang BF; Pomponi SA; Lavrov DV
    Mol Biol Evol; 2007 Jul; 24(7):1518-27. PubMed ID: 17434903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of RNA-binding proteins in animals: insights from genome-wide analysis in the sponge Amphimedon queenslandica.
    Kerner P; Degnan SM; Marchand L; Degnan BM; Vervoort M
    Mol Biol Evol; 2011 Aug; 28(8):2289-303. PubMed ID: 21325094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan.
    Müller WE; Müller IM
    Prog Mol Subcell Biol; 2003; 37():1-33. PubMed ID: 15825638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal.
    Ferrier DE
    Brief Funct Genomics; 2016 Sep; 15(5):333-41. PubMed ID: 26637506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retracing the path of planar cell polarity.
    Schenkelaars Q; Fierro-Constain L; Renard E; Borchiellini C
    BMC Evol Biol; 2016 Apr; 16():69. PubMed ID: 27039172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.
    Fernandez-Valverde SL; Calcino AD; Degnan BM
    BMC Genomics; 2015 May; 16(1):387. PubMed ID: 25975661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity.
    Gaiti F; Degnan BM; Tanurdžić M
    RNA Biol; 2018; 15(6):696-702. PubMed ID: 29616867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa.
    Sperling EA; Peterson KJ; Pisani D
    Mol Biol Evol; 2009 Oct; 26(10):2261-74. PubMed ID: 19597161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New genomic data and analyses challenge the traditional vision of animal epithelium evolution.
    Belahbib H; Renard E; Santini S; Jourda C; Claverie JM; Borchiellini C; Le Bivic A
    BMC Genomics; 2018 May; 19(1):393. PubMed ID: 29793430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paleoclimate and evolution: emergence of sponges during the neoproterozoic.
    Müller WE; Wang X; Schröder HC
    Prog Mol Subcell Biol; 2009; 47():55-77. PubMed ID: 19198773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.