BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26253320)

  • 1. Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts.
    Schär M; Gabr RE; El-Sharkawy AM; Steinberg A; Bottomley PA; Weiss RG
    J Cardiovasc Magn Reson; 2015 Aug; 17(1):70. PubMed ID: 26253320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized rest and stress human cardiac creatine kinase reaction kinetics at 3 T.
    Clarke WT; Peterzan MA; Rayner JJ; Sayeed RA; Petrou M; Krasopoulos G; Lake HA; Raman B; Watson WD; Cox P; Hundertmark MJ; Apps AP; Lygate CA; Neubauer S; Rider OJ; Rodgers CT
    NMR Biomed; 2019 Jun; 32(6):e4085. PubMed ID: 30920054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study.
    Bashir A; Gropler R
    NMR Biomed; 2014 Jun; 27(6):663-71. PubMed ID: 24706347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural-network classification of cardiac disease from
    Solaiyappan M; Weiss RG; Bottomley PA
    J Cardiovasc Magn Reson; 2019 Aug; 21(1):49. PubMed ID: 31401975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired ATP kinetics in failing in vivo mouse heart.
    Gupta A; Chacko VP; Schär M; Akki A; Weiss RG
    Circ Cardiovasc Imaging; 2011 Jan; 4(1):42-50. PubMed ID: 20926788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization.
    Bashir A; Zhang J; Denney TS
    PLoS One; 2020; 15(3):e0229933. PubMed ID: 32191723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics.
    Schär M; El-Sharkawy AM; Weiss RG; Bottomley PA
    Magn Reson Med; 2010 Jun; 63(6):1493-501. PubMed ID: 20512852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study.
    Gabr RE; El-Sharkawy AM; Schär M; Panjrath GS; Gerstenblith G; Weiss RG; Bottomley PA
    J Cardiovasc Magn Reson; 2018 Dec; 20(1):81. PubMed ID: 30526611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo.
    Bottomley PA; Ouwerkerk R; Lee RF; Weiss RG
    Magn Reson Med; 2002 May; 47(5):850-63. PubMed ID: 11979563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring inorganic phosphate and intracellular pH in the healthy and hypertrophic cardiomyopathy hearts by in vivo 7T
    Valkovič L; Clarke WT; Schmid AI; Raman B; Ellis J; Watkins H; Robson MD; Neubauer S; Rodgers CT
    J Cardiovasc Magn Reson; 2019 Mar; 21(1):19. PubMed ID: 30871562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death.
    Bottomley PA; Panjrath GS; Lai S; Hirsch GA; Wu K; Najjar SS; Steinberg A; Gerstenblith G; Weiss RG
    Sci Transl Med; 2013 Dec; 5(215):215re3. PubMed ID: 24337482
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Chen C; Stephenson MC; Peters A; Morris PG; Francis ST; Gowland PA
    Magn Reson Med; 2018 Jan; 79(1):22-30. PubMed ID: 28303591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel strategy for measuring creatine kinase reaction rate in the in vivo heart.
    Xiong Q; Li Q; Mansoor A; Jameel MN; Du F; Chen W; Zhang J
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H1010-9. PubMed ID: 19561307
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Wang CY; Liu Y; Huang S; Griswold MA; Seiberlich N; Yu X
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 28915341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study.
    Bottomley PA; Wu KC; Gerstenblith G; Schulman SP; Steinberg A; Weiss RG
    Circulation; 2009 Apr; 119(14):1918-24. PubMed ID: 19332463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial Energetics in Obesity: Enhanced ATP Delivery Through Creatine Kinase With Blunted Stress Response.
    Rayner JJ; Peterzan MA; Watson WD; Clarke WT; Neubauer S; Rodgers CT; Rider OJ
    Circulation; 2020 Apr; 141(14):1152-1163. PubMed ID: 32138541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction.
    Uğurbil K; Petein M; Maidan R; Michurski S; From AH
    Biochemistry; 1986 Jan; 25(1):100-7. PubMed ID: 3954984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.