BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26253320)

  • 21. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.
    Clarke WT; Robson MD; Neubauer S; Rodgers CT
    Magn Reson Med; 2017 Jul; 78(1):20-32. PubMed ID: 27579566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of NMR spectroscopy for the study of heart failure.
    ten Hove M; Neubauer S
    Curr Pharm Des; 2008; 14(18):1787-97. PubMed ID: 18673182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function.
    Sauter A; Rudin M
    J Biol Chem; 1993 Jun; 268(18):13166-71. PubMed ID: 8514755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphocreatine T1 measurements with and without exchange in the heart.
    Friedrich J; Nascimben L; Liao R; Ingwall JS
    Magn Reson Med; 1993 Jul; 30(1):45-50. PubMed ID: 8371674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV; Lyulina NV; Steinschneider AYa ; Zueva MYu ; Saks VA
    FEBS Lett; 1986 Nov; 208(1):89-93. PubMed ID: 3770212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On neglecting chemical exchange effects when correcting in vivo (31)P MRS data for partial saturation.
    Ouwerkerk R; Bottomley PA
    J Magn Reson; 2001 Feb; 148(2):425-35. PubMed ID: 11237649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient
    Ren J; Sherry AD; Malloy CR
    Magn Reson Med; 2017 Nov; 78(5):1657-1666. PubMed ID: 27868234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium.
    Akki A; Su J; Yano T; Gupta A; Wang Y; Leppo MK; Chacko VP; Steenbergen C; Weiss RG
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H844-52. PubMed ID: 22886411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic effect on cardiac energetics by targeting the creatine kinase system: in vivo application of high-resolution
    Maguire ML; McAndrew DJ; Lake HA; Ostrowski PJ; Zervou S; Neubauer S; Lygate CA; Schneider JE
    J Cardiovasc Magn Reson; 2023 Feb; 25(1):6. PubMed ID: 36740688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid,
    Miller JJ; Valkovič L; Kerr M; Timm KN; Watson WD; Lau JYC; Tyler A; Rodgers C; Bottomley PA; Heather LC; Tyler DJ
    Magn Reson Med; 2021 Jun; 85(6):2978-2991. PubMed ID: 33538063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATP production rate via creatine kinase or ATP synthase in vivo: a novel superfast magnetization saturation transfer method.
    Xiong Q; Du F; Zhu X; Zhang P; Suntharalingam P; Ippolito J; Kamdar FD; Chen W; Zhang J
    Circ Res; 2011 Mar; 108(6):653-63. PubMed ID: 21293002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and simultaneous measurement of phosphorus metabolite pool size ratio and reaction kinetics of enzymes in vivo.
    Kim SY; Chen W; Ongur D; Du F
    J Magn Reson Imaging; 2018 Jan; 47(1):210-221. PubMed ID: 28480619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 31P magnetization transfer studies in the monkey brain.
    Mora BN; Narasimhan PT; Ross BD
    Magn Reson Med; 1992 Jul; 26(1):100-15. PubMed ID: 1625557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmurally differentiated measurement of ATP hydrolysis rates in the in vivo porcine hearts.
    Jang A; Xiong Q; Zhang P; Zhang J
    Magn Reson Med; 2016 May; 75(5):1859-66. PubMed ID: 26892710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.
    Bresnen A; Duong TQ
    Magn Reson Med; 2015 Feb; 73(2):726-30. PubMed ID: 24523049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.