BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26253323)

  • 1. The processing of visual and auditory information for reaching movements.
    Glazebrook CM; Welsh TN; Tremblay L
    Psychol Res; 2016 Sep; 80(5):757-73. PubMed ID: 26253323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor congruency and multisensory integration jointly facilitate visual information processing before movement execution.
    Elshout JA; Van der Stoep N; Nijboer TCW; Van der Stigchel S
    Exp Brain Res; 2020 Mar; 238(3):667-673. PubMed ID: 32036413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory cues for somatosensory targets invoke visuomotor transformations: Behavioral and electrophysiological evidence.
    Manson GA; Tremblay L; Lebar N; de Grosbois J; Mouchnino L; Blouin J
    PLoS One; 2019; 14(5):e0215518. PubMed ID: 31048853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of visual stimuli is improved by accompanying auditory stimuli: the role of eye movements and sound location.
    Doyle MC; Snowden RJ
    Perception; 2001; 30(7):795-810. PubMed ID: 11515953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, accurate reaching movements with a visual-to-auditory sensory substitution device.
    Levy-Tzedek S; Hanassy S; Abboud S; Maidenbaum S; Amedi A
    Restor Neurol Neurosci; 2012; 30(4):313-23. PubMed ID: 22596353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual localization ability influences cross-modal bias.
    Hairston WD; Wallace MT; Vaughan JW; Stein BE; Norris JL; Schirillo JA
    J Cogn Neurosci; 2003 Jan; 15(1):20-9. PubMed ID: 12590840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.
    Strauss S; Woodgate PJ; Sami SA; Heinke D
    Neural Netw; 2015 Dec; 72():3-12. PubMed ID: 26667353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.
    Moehler T; Fiehler K
    Exp Brain Res; 2017 Nov; 235(11):3251-3260. PubMed ID: 28765992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ventriloquist in periphery: impact of eccentricity-related reliability on audio-visual localization.
    Charbonneau G; Véronneau M; Boudrias-Fournier C; Lepore F; Collignon O
    J Vis; 2013 Oct; 13(12):20. PubMed ID: 24167163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations.
    Blais M; Albaret JM; Tallet J
    Exp Brain Res; 2015 Nov; 233(11):3261-9. PubMed ID: 26238405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of visuomotor delays on the control of movement and on perceptual localization in the presence and absence of visual targets.
    Avraham G; Sulimani E; Mussa-Ivaldi FA; Nisky I
    J Neurophysiol; 2019 Dec; 122(6):2259-2271. PubMed ID: 31577532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action goal selection and motor planning can be dissociated by tool use.
    Collins T; Schicke T; Röder B
    Cognition; 2008 Dec; 109(3):363-71. PubMed ID: 19012884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. False reaching movements in localization test and effect of auditory feedback in simulated ultra-low vision subjects and patients with retinitis pigmentosa.
    Endo T; Kanda H; Hirota M; Morimoto T; Nishida K; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2016 May; 254(5):947-56. PubMed ID: 26743752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of online control of reaching movements with aging: a double-step study.
    Sarlegna FR
    Neurosci Lett; 2006 Aug; 403(3):309-14. PubMed ID: 16723186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency.
    Holmes NP; Dakwar AR
    Vision Res; 2015 Dec; 117():105-16. PubMed ID: 26485660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of head position on the spatial representation of acoustic targets.
    Goossens HH; van Opstal AJ
    J Neurophysiol; 1999 Jun; 81(6):2720-36. PubMed ID: 10368392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spatial response coding on distractor processing: evidence from auditory spatial negative priming tasks with keypress, joystick, and head movement responses.
    Möller M; Mayr S; Buchner A
    Atten Percept Psychophys; 2015 Jan; 77(1):293-310. PubMed ID: 25214304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.