BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26253376)

  • 21. In silico and in vitro methods to optimize the performance of experimental gastroretentive floating mini-tablets.
    Eberle VA; Häring A; Schoelkopf J; Gane PA; Huwyler J; Puchkov M
    Drug Dev Ind Pharm; 2016; 42(5):808-17. PubMed ID: 26307090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of polymer content on early gel-layer formation in HPMC matrices: The use of CLSM visualisation to identify the percolation threshold.
    Mason LM; Campiñez MD; Pygall SR; Burley JC; Gupta P; Storey DE; Caraballo I; Melia CD
    Eur J Pharm Biopharm; 2015 Aug; 94():485-92. PubMed ID: 26143369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Formulation Excipients and Thermal Treatment on the Release Properties of Lisinopril Spheres and Tablets.
    Amador Ríos Z; Ghaly ES
    Biomed Res Int; 2015; 2015():423615. PubMed ID: 26185757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biopharmaceutical implications of excipient variability on drug dissolution from immediate release products.
    Zarmpi P; Flanagan T; Meehan E; Mann J; Østergaard J; Fotaki N
    Eur J Pharm Biopharm; 2020 Sep; 154():195-209. PubMed ID: 32681966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical factors in the release of drugs from sustained release hydrophilic matrices.
    Maderuelo C; Zarzuelo A; Lanao JM
    J Control Release; 2011 Aug; 154(1):2-19. PubMed ID: 21497624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics.
    Marinich JA; Ferrero C; Jiménez-Castellanos MR
    Eur J Pharm Biopharm; 2012 Apr; 80(3):674-81. PubMed ID: 22210473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid lipid excipients - matrix agents for sustained drug delivery.
    Rosiaux Y; Jannin V; Hughes S; Marchaud D
    J Control Release; 2014 Aug; 188():18-30. PubMed ID: 24929038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production and
    Ma C; Huang Z; Zhu Y; Chen X; Singh V; Huang Y; Pan X; Wu C
    Pharmazie; 2017 Sep; 72(9):511-517. PubMed ID: 29441977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal Selection of Incoming Materials from the Inventory for Achieving the Target Drug Release Profile of High Drug Load Sustained-Release Matrix Tablet.
    Zhang Y; Xu B; Wang X; Dai S; Shi X; Qiao Y
    AAPS PharmSciTech; 2019 Jan; 20(2):76. PubMed ID: 30635743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Examining the impact of excipient material property variation on drug product quality attributes: a quality-by-design study for a roller compacted, immediate release tablet.
    Kushner J; Langdon BA; Hiller JI; Carlson GT
    J Pharm Sci; 2011 Jun; 100(6):2222-39. PubMed ID: 21319161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation.
    Brouillet F; Bataille B; Cartilier L
    Int J Pharm; 2008 May; 356(1-2):52-60. PubMed ID: 18280069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carboxymethyl high amylose starch as excipient for controlled drug release: mechanistic study and the influence of degree of substitution.
    Lemieux M; Gosselin P; Mateescu MA
    Int J Pharm; 2009 Dec; 382(1-2):172-82. PubMed ID: 19716866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A moving-boundary model of dissolution from binary drug-excipient granules incorporating microstructure.
    Moroney KM; Kotamarthy L; Muthancheri I; Ramachandran R; Vynnycky M
    Int J Pharm; 2021 Apr; 599():120219. PubMed ID: 33548366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles.
    Khaled SA; Burley JC; Alexander MR; Yang J; Roberts CJ
    J Control Release; 2015 Nov; 217():308-14. PubMed ID: 26390808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rosin: a naturally derived excipient in drug delivery systems.
    Kumar S; Gupta SK
    Polim Med; 2013; 43(1):45-8. PubMed ID: 23808195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the drug/excipient particle size ratio in the percolation model for tablets.
    Millán M; Caraballo I; Rabasco AM
    Pharm Res; 1998 Feb; 15(2):216-20. PubMed ID: 9523306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gum Ghatti--a pharmaceutical excipient: development, evaluation and optimization of sustained release mucoadhesive matrix tablets of domperidone.
    Gurpreetarora ; Malik K; Rana V; Singh I
    Acta Pol Pharm; 2012; 69(4):725-37. PubMed ID: 22876617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories.
    Caraballo I
    Expert Opin Drug Deliv; 2010 Nov; 7(11):1291-301. PubMed ID: 20977292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets.
    Schilling SU; Bruce CD; Shah NH; Malick AW; McGinity JW
    Int J Pharm; 2008 Sep; 361(1-2):158-68. PubMed ID: 18582547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmaceutical design of a new lactose-free coprocessed excipient: application of hydrochlorothiazide as a low solubility drug model.
    Viscasillas Clerch A; Fernandez Campos F; Del Pozo A; Calpena Campmany AC
    Drug Dev Ind Pharm; 2013 Jul; 39(7):961-9. PubMed ID: 22607083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.