These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26253594)

  • 1. A new look on S-R associations: How S and R link.
    Allenmark F; Moutsopoulou K; Waszak F
    Acta Psychol (Amst); 2015 Sep; 160():161-9. PubMed ID: 26253594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Caudate Nucleus Mediates Learning of Stimulus-Control State Associations.
    Chiu YC; Jiang J; Egner T
    J Neurosci; 2017 Jan; 37(4):1028-1038. PubMed ID: 28123033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining stimulus representation in stimulus-response associations formed on the basis of task execution and verbal codes.
    Pfeuffer CU; Hosp T; Kimmig E; Moutsopoulou K; Waszak F; Kiesel A
    Psychol Res; 2018 Jul; 82(4):744-758. PubMed ID: 28391366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple priming instances increase the impact of practice-based but not verbal code-based stimulus-response associations.
    Pfeuffer CU; Moutsopoulou K; Waszak F; Kiesel A
    Acta Psychol (Amst); 2018 Mar; 184():100-109. PubMed ID: 28511771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priming and stimulus-response learning in perceptual classification tasks.
    Soldan A; Clarke B; Colleran C; Kuras Y
    Memory; 2012; 20(4):400-13. PubMed ID: 22436079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Priming, response learning and repetition suppression.
    Horner AJ; Henson RN
    Neuropsychologia; 2008; 46(7):1979-91. PubMed ID: 18328508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of overcoming interference from instructed and implemented stimulus-response associations.
    Brass M; Wenke D; Spengler S; Waszak F
    J Neurosci; 2009 Feb; 29(6):1766-72. PubMed ID: 19211883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivoxel Object Representations in Adult Human Visual Cortex Are Flexible: An Associative Learning Study.
    Senoussi M; Berry I; VanRullen R; Reddy L
    J Cogn Neurosci; 2016 Jun; 28(6):852-68. PubMed ID: 26836513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontal networks for learning and executing arbitrary stimulus-response associations.
    Boettiger CA; D'Esposito M
    J Neurosci; 2005 Mar; 25(10):2723-32. PubMed ID: 15758182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieval of bindings between task-irrelevant stimuli and responses can facilitate behaviour under conditions of high response certainty.
    Horner AJ
    Q J Exp Psychol (Hove); 2016; 69(3):561-73. PubMed ID: 26085119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The power of words: On item-specific stimulus-response associations formed in the absence of action.
    Pfeuffer CU; Moutsopoulou K; Pfister R; Waszak F; Kiesel A
    J Exp Psychol Hum Percept Perform; 2017 Feb; 43(2):328-347. PubMed ID: 27831720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural representation of stimulus-response associations during task preparation.
    Cookson SL; Hazeltine E; Schumacher EH
    Brain Res; 2016 Oct; 1648(Pt A):496-505. PubMed ID: 27527267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-classification and stimulus-action associations: Effects of repetition learning and durability.
    Moutsopoulou K; Yang Q; Desantis A; Waszak F
    Q J Exp Psychol (Hove); 2015; 68(9):1744-57. PubMed ID: 25396708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetition priming in amnesia: Distinguishing associative learning at different levels of abstraction.
    Race E; Burke K; Verfaellie M
    Neuropsychologia; 2019 Jan; 122():98-104. PubMed ID: 30485796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional priming processes in the Simon task.
    Metzker M; Dreisbach G
    J Exp Psychol Hum Percept Perform; 2009 Dec; 35(6):1770-83. PubMed ID: 19968434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERP correlates of priming in language and stimulus equivalence: evidence of similar N400 effects in absence of semantic content.
    Tabullo A; Yorio A; Zanutto S; Wainselboim A
    Int J Psychophysiol; 2015 May; 96(2):74-83. PubMed ID: 25795314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition.
    Gomes CA; Figueiredo P; Mayes A
    Hippocampus; 2016 Apr; 26(4):472-91. PubMed ID: 26418396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Event-related potential correlates of stimulus equivalence classes: A study of task order of the equivalence based priming probes with respect to the stimulus equivalence tests, and among the distinct trial types with each other.
    Menéndez J; Sánchez F; Polti I; Idesis S; Avellaneda M; Tabullo Á; Iorio A
    Behav Brain Res; 2018 Jul; 347():242-254. PubMed ID: 29572103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic congruence enhances memory of episodic associations: role of theta oscillations.
    Atienza M; Crespo-Garcia M; Cantero JL
    J Cogn Neurosci; 2011 Jan; 23(1):75-90. PubMed ID: 19925185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetition priming for multisensory stimuli: task-irrelevant and task-relevant stimuli are associated if semantically related but with no advantage over uni-sensory stimuli.
    Hecht D; Reiner M; Karni A
    Brain Res; 2009 Jan; 1251():236-44. PubMed ID: 19022232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.