These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26253678)
61. Potato starch modified by Streptococcus thermophilus GtfB enzyme has low viscoelastic and slowly digestible properties. Li D; Fu X; Mu S; Fei T; Zhao Y; Fu J; Lee BH; Ma Y; Zhao J; Hou J; Li X; Li Z Int J Biol Macromol; 2021 Jul; 183():1248-1256. PubMed ID: 33965495 [TBL] [Abstract][Full Text] [Related]
62. Structural characterization of mixed-linkage α-glucans produced by mutants of Lactobacillus reuteri TMW 1.106 dextransucrase. Münkel F; Fischer A; Wefers D Carbohydr Polym; 2020 Mar; 231():115697. PubMed ID: 31888841 [TBL] [Abstract][Full Text] [Related]
63. Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Devlamynck T; Te Poele EM; Meng X; van Leeuwen SS; Dijkhuizen L Appl Microbiol Biotechnol; 2016 Sep; 100(17):7529-39. PubMed ID: 27052379 [TBL] [Abstract][Full Text] [Related]
64. Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180. Pijning T; Vujičić-Žagar A; Kralj S; Dijkhuizen L; Dijkstra BW FEBS J; 2014 May; 281(9):2159-71. PubMed ID: 24597929 [TBL] [Abstract][Full Text] [Related]
65. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Gerwig GJ; Te Poele EM; Dijkhuizen L; Kamerling JP Carbohydr Res; 2017 Feb; 440-441():51-62. PubMed ID: 28231561 [TBL] [Abstract][Full Text] [Related]
66. Functional analyses of a conserved region in glucosyltransferases of Streptococcus mutans. Chia JS; Yang CS; Chen JY Infect Immun; 1998 Oct; 66(10):4797-803. PubMed ID: 9746581 [TBL] [Abstract][Full Text] [Related]
67. Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Kralj S; van Geel-Schutten GH; Dondorff MMG; Kirsanovs S; van der Maarel MJEC; Dijkhuizen L Microbiology (Reading); 2004 Nov; 150(Pt 11):3681-3690. PubMed ID: 15528655 [TBL] [Abstract][Full Text] [Related]
68. Replacement of Loops at the Entrance of the Active Pocket of Li D; Xu W; Mu S; Gao X; Ma F; Duan C; Li X J Agric Food Chem; 2024 Jun; 72(22):12607-12617. PubMed ID: 38785045 [TBL] [Abstract][Full Text] [Related]
69. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Plaza-Vinuesa L; Hernandez-Hernandez O; Moreno FJ; de Las Rivas B; Muñoz R Microb Cell Fact; 2019 Oct; 18(1):183. PubMed ID: 31655584 [TBL] [Abstract][Full Text] [Related]
70. Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. Kralj S; van Geel-Schutten IG; Faber EJ; van der Maarel MJ; Dijkhuizen L Biochemistry; 2005 Jun; 44(25):9206-16. PubMed ID: 15966745 [TBL] [Abstract][Full Text] [Related]
71. Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Te Poele EM; Devlamynck T; Jäger M; Gerwig GJ; Van de Walle D; Dewettinck K; Hirsch AKH; Kamerling JP; Soetaert W; Dijkhuizen L Sci Rep; 2018 Jan; 8(1):1516. PubMed ID: 29367749 [TBL] [Abstract][Full Text] [Related]
72. L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose. Staudigl P; Haltrich D; Peterbauer CK J Agric Food Chem; 2014 Feb; 62(7):1617-24. PubMed ID: 24443973 [TBL] [Abstract][Full Text] [Related]
73. Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121. Kralj S; Eeuwema W; Eckhardt TH; Dijkhuizen L FEBS J; 2006 Aug; 273(16):3735-42. PubMed ID: 16911522 [TBL] [Abstract][Full Text] [Related]
74. A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Paul CJ; Leemhuis H; Dobruchowska JM; Grey C; Önnby L; van Leeuwen SS; Dijkhuizen L; Karlsson EN Appl Microbiol Biotechnol; 2015 Sep; 99(17):7101-13. PubMed ID: 25693671 [TBL] [Abstract][Full Text] [Related]
75. Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an alpha-amylase from a Bacillus circulans strain. Watanabe H; Nishimoto T; Kubota M; Chaen H; Fukuda S Biosci Biotechnol Biochem; 2006 Nov; 70(11):2690-702. PubMed ID: 17090949 [TBL] [Abstract][Full Text] [Related]
76. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Vujicic-Zagar A; Pijning T; Kralj S; López CA; Eeuwema W; Dijkhuizen L; Dijkstra BW Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21406-11. PubMed ID: 21118988 [TBL] [Abstract][Full Text] [Related]
77. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Kralj S; Stripling E; Sanders P; van Geel-Schutten GH; Dijkhuizen L Appl Environ Microbiol; 2005 Jul; 71(7):3942-50. PubMed ID: 16000808 [TBL] [Abstract][Full Text] [Related]
78. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1. Leemhuis H; Rozeboom HJ; Wilbrink M; Euverink GJ; Dijkstra BW; Dijkhuizen L Biochemistry; 2003 Jun; 42(24):7518-26. PubMed ID: 12809508 [TBL] [Abstract][Full Text] [Related]
79. Starch modification with microbial alpha-glucanotransferase enzymes. van der Maarel MJ; Leemhuis H Carbohydr Polym; 2013 Mar; 93(1):116-21. PubMed ID: 23465909 [TBL] [Abstract][Full Text] [Related]
80. Acceptor dependent catalytic properties of GH57 4-α-glucanotransferase from Jung JH; Hong S; Jeon EJ; Kim MK; Seo DH; Woo EJ; Holden JF; Park CS Front Microbiol; 2022; 13():1016675. PubMed ID: 36274706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]