BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26253845)

  • 1. Revisiting time-resolved protein phosphorescence.
    Draganski AR; Corradini MG; Ludescher RD
    Appl Spectrosc; 2015 Sep; 69(9):1074-81. PubMed ID: 26253845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of fluorescence decays using a power-like model.
    Włodarczyk J; Kierdaszuk B
    Biophys J; 2003 Jul; 85(1):589-98. PubMed ID: 12829513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-denaturing transitions in human serum albumin probed using time-resolved phosphorescence.
    Sagoo K; Hirsch R; Johnston P; McLoskey D; Hungerford G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():611-7. PubMed ID: 24509539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved phosphorescence of tyrosine, tyrosine analogs, and tyrosyl residues in oxytocin and small peptides.
    Rousslang KW; Reid PJ; Holloway DM; Haynes DR; Dragavon J; Ross JB
    J Protein Chem; 2002 Nov; 21(8):547-55. PubMed ID: 12638657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.
    Groza RC; Li B; Ryder AG
    Anal Chim Acta; 2015 Jul; 886():133-42. PubMed ID: 26320645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited states of tryptophan in cod parvalbumin. Identification of a short-lived emitting triplet state at room temperature.
    Sudhakar K; Phillips CM; Williams SA; Vanderkooi JM
    Biophys J; 1993 May; 64(5):1503-11. PubMed ID: 8324187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved room temperature tryptophan phosphorescence in proteins.
    Schauerte JA; Steel DG; Gafni A
    Methods Enzymol; 1997; 278():49-71. PubMed ID: 9170309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-resolved fluorescence emission of proteins using the synchrotron radiation as pulsed-light source: cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin.
    Vincent M; Rouvière N; Gallay J
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1113-31. PubMed ID: 10976868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved fluorescence of the single tryptophan residue in rat alpha-fetoprotein and rat serum albumin: analysis by the maximum-entropy method.
    Gentin M; Vincent M; Brochon JC; Livesey AK; Cittanova N; Gallay J
    Biochemistry; 1990 Nov; 29(45):10405-12. PubMed ID: 1702023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():380-7. PubMed ID: 25025310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions.
    De Beuckeleer K; Volckaert G; Engelborghs Y
    Proteins; 1999 Jul; 36(1):42-53. PubMed ID: 10373005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Biochem; 2010 Feb; 147(2):191-200. PubMed ID: 19884191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.